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Abstract- We consider the one dimensional initial-boundary Sobolev problem with
delay. For solving this problem numerically, we construct fourth order differential-
difference scheme and obtain the error estimate for its solution. Further we use the
appropriate Runge-Kutta method for the realization of our differential-difference
problem.
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1. INTRODUCTION

We consider the initial-boundary value problem for pseudo-parabolic differential
equation with delay in the domain Q =Qx[0,T]; Q=[0,1], Q=Qx(0,T], Q@=(0,I)

%—a(t)a;t(gxz) b() ( t)+c(t)u(xt)+d(t)u(xt—r)+f(xt) (xt)eQ, (1)
u(x,t) =p(xt), (x )eQx[—r,O], 2)
u(O,t)=u(l,t)=0, te(0,T], (3)

where a>a >0, b, ¢, d, f and ¢ are sufficiently smooth functions satisfying certain

regularity conditions to be specified, r >0 represents the delay parameter.

Equations of this type arise in many areas of mechanics and physics. They are
used to study heat conduction [7], homogeneous fluid flow in fissured rocks [5], shear
in second order fluids [12,19] and other physical models. The important characteristic
of these models is that they express the conservation of a certain quantity (mass,
momentum, heat, etc.) in any sub-domain. For a discussion of existence and uniqueness
results of pseudo-parabolic equations see [6,8,13,18]. Various finite difference schemes
have been constructed to treat such problems [1-4] For example in [10] two difference
approximation schemes to a nonlinear pseudo-parabolic equation are developed. Each
of these schemes possesses a unique solution which can be obtained by an iterative
procedure. Further in [17] two difference streamline diffusion schemes for solving
linear Sobolev equations with convection-dominated term are given. We can see other
numerical methods of this type of equations in [11, 15] (see also the references cited in
them). In [9] a Crank-Nicolson-Galerkin approximation with extrapolated coefficients is
presented for three cases for the nonlinear Sobolev equation along with a conjugate
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gradient iterative procedure which can be used efficiently to solve the different linear
systems of algebraic equations arising at each step from the Galerkin method. In [20]
the author study a finite volume element approximation of pseudo-parabolic equations
in three spatial dimensions.

In this study, we use the method of lines for the discretization in space variable
for the problem (1.1)-(1.3). The method of lines is a general technique for solving
partial differential equations by typically using finite difference relationships for the
spatial derivatives or the time derivative. Our aim is to get a fourth order accurate
differential-difference scheme and to establish the error estimate for its solution.

2. CONSTRUCTION OF THE SCHEME

On the Q, we introduce the uniform mesh

a, ={x =ih,i=12,..,N-1 h=I/N}

and denote

O = 9in Zh%i 04

for any mesh function g, .

To construct the difference scheme, we will use the following relation which is valid for

any g (X) € C:6[Xi—17 Xial

1 _
5[07(%.) 100" (4)+ 9" (x.2)]= Gy +R. @
where
R = 29 (e)A (e
i ;. aXG [ !
h 3 h? 5
) i(xm—f) _@(Xm_f) 6> X%
A(g)_ h ht .
3 5
i(g_xi—l) _@(g_xi—l) & <X
Let x=x; in(1)
aU(axti't) —a(t) aytg;ét) =b(t) az%g()(zi't) +e(ulx, ) +d(Oulx,t—r)+f(x,1), % €&, 1e(0,T]

()

Using formula (4) in (5), we obtain

é[ui;l(t)+10u;(t)+u;1(t)]—a(t)u;X,i (t)=b(t)ug, (1)
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d
PO )20, 1) 1(t)]+§[ L (t=1)+100, (t-1) Uy ()]
+H()+R(t), i=12,..N -1, (6)
ui(t)=a(t), 7)
Uy (t)=uy (t)=0, (8)
where

fi(t)=g5] () +10F (t)+ fiy(t)],

B h* o'u(&,t) h_466u(§i,t)
RD)=2() 50 o TP Waag e & <(uX).

Taking into account the following relations

L [, (01000 0] 0+ o, 0,

%[”m(t)ﬂoui (t)+us(t) |=c(t)y, (t)+gc(t)u“‘ (®),

O a(t=r) 100 (e (=) <00 1)+ 0 0, ()

\_/

and neglecting the remainder term R. in (6), we propose the following differential-
difference scheme

(O[3~ [ <t>=(b<t>+c< >§‘§]vxx.< J+et)y(0)+d () t-r)

+d (t)g Yo (t=1)+ fi(1),i=22..,N-1,te(0,T], (9)

Yi(t)=ai(t), i=01..,N, te(0,T], (10)
Yo(t)=yy(t)=0, te(0,T]. (11)

For the error function z (t)=;(t)—u;(t), from the relations (6)-(8) and (9)-(11), we
have the following differential-difference problem
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z{(t)—(a(t)—%}z;xli (t):(b(t)m(t)g}m (t)+c(t)z(t)+d(t)z (t-r)

+d (t)gzm (t-r)-R(t), i=1,2,..,N-1 (12)
z(t)=0, te(0,T], (13)
Zo(t)=2y(t)=0, te(0,T]. (14)

3. APRIORI ESTIMATE

In this section, we give a lemma which is used in the next section for establishing the
error estimate

Lemma 3.1. Let a,b, f eC[0,T] and ¢ e C[-r,0]. Then the solution of the following
initial value problem

V() +a(t)v(t)+b(t)v(t—r)=f(), O<t<T, (15)
v(t) =p(t), —-r<t<0, (16)
provides the following inequality

0
|v(t)|£(co+clj-|(o(77)|d77Je°lt, 0<t<T. (17)
Here

C, = (|(p(0)| +||f ||1)max {1, e’a*T} ,
¢, = o], max {1, e“"‘*T} ,
a.=ming, -, a(t),

T

£, = ]I @jdt,

0
||b||oo = MaX 1 |b(t)|
Proof. For the solution of (15)-(16), we can write

t t t
~[a(mdn ~[a(m)dn ~[a(mdn

v(t) =v(0)e —jb(f)v(r—r)e1 dr+jf(r)er dr.

From this relation, we get
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V(D[ < (0O +] ], max{L.e "]+ o], maxa e—aJ}DV(T_ fdr. 9
After denoting &(t) = \v(t)\ , the inequality (18) reduces to

5(t)SC0+cli'5(r—r)dr. (19)
Using variable transformation z—r =7 in (19), it can be seen clearly that

t-r 0
ans%+qj5@mns%+qj@mmmfmoasn
-r -r

0 t—r
5(t)SCO+C1JA‘(p(77)‘d77+c1 I o(n)dn fort>r.
-r 0

From here, by virtue of Gronwall’s inequality, we easily arrive at (17).
0

4. THE ERROR ESTIMATE

Now we give the main result of this paper.
o'u o

Theorem 4.1. Let the derivatives FEvap are bounded on the Q and
X" OX

2
a——>a,.>0.
12

Then the error of the problem (9)-(11) satisfies
|Vi(t)—u () <Ch*,i=01..,N, te(0,T], (20)
where C is a constant which is independent of h.

Proof. Let Z(t):(zl(t),zz(t),...,zN_l(t))T. Then the scheme (12)-(14) can be
expressed in vector form as

Z'(t)+(a(t)—gj MZ'(t) :—(b(t)+ C(;)ZhZJMz (t)+c(t)Z(t)+d(t)Z(t-r)
-d(lt;hz MZ (t—r)+ (1), (21)
Z(0)=0, (22)
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......... 12

The matrix M can be diagonalized as [ 14, 16 ]

M = B'diagonal (4, 4,,...4y_)B.,

with
N-1 i 2 ik -
bl 1 i+k /1
B=B _(blk)i’k:l_((—l) NsmW} :
i k=1
4 7l
1_1 :Fcosz[mj |:1 ..... N _1

Multiplying equation (21) on the left by B and denoting

T

BZ(t)="¥(t)= (Wl(t)"/’z (t),-mn ‘/’N—l(t)) ’
BR(t)=@(t)=(4(t)., (1), s (1))

the initial-value problem (21)-(22) is turned into the decomposed system as :
h2 c(t)h?
0 a1~ i) =501+ L L (0t

d(t)h?
12

+d (t)ys(t—r)- Aws(t=r)+d(t),s=12..,N-1,

v,(0)=0,5=12,..,N 1.

If we rewrite (23) in the form

h2
0 [b(t)—l—cq)z ]ﬂs—c(t) N d(;;hzﬂs_d(t) (t-r) 4.(1)
vl (t)+ ~—w,(t)+ ~Vs(t=r) = : Z
1+ﬂs(a(t)—?2] 1+ﬂ$(a(t)—?2J 1+As(a(t)—r2j

(23)

(24)
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and after then we apply Lemma 3.1, we conclude

v (1)< s . max{l,e’”}ecl'st,
1+ 4 a—h—
s 12 )
where

A = min[oﬂ A(t), c,=|B], max{Le™}.

A, and C, ; are uniformly bounded independently of h.

For A, it can be written that

_ (b(t)a—c(i;hz};g (1)
A ()< 1+/Is(a(t)—r;j +

2

1+z{a(t)-;‘;] |

289

(25)

(26)

Also as « —?—2 > a. >0 and A constants are bounded below with 4, , it follows that

2

1+/15[a(t)—;]—2J2a0 >0.

Taking then into account (27) in (26), we get

(nbn (el J |
12

1+ Ao
<a.*| b +Lhz +a,|c]. -
=12 0 e
If we pay attention to h < IE , then it follows that

A(D)]<a [nbnm el jmsncnw

In the similar way, for B, we obtain

+ag’[],

A (1) <

(27)
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B, (1) < o[l

Thereby the constants A. and C, are bounded independently of h. Therefore the

inequality (25) yields
ws(t) <CAe
Since

(1 \—Z\ kHRk\—fZ\Rk\-fN ~1)ch* <CJNh* <Ch®,

the inequality (28) leads to

X 28

lws (t)| < a4"Ch?s.

Further, from the relation

7i(t)= Z ik ¥k

we then obtaln

B N > N1 he )
‘Zi (t)‘ <o 1Ch3-5;/1k by | < crﬁBE( N _1);42—[”kj < Ch“thi—l . (29)
- =L 4cos

i k=1 ) ﬂ'(N—k)
N 4sin [ 2N )

Taking into account the following inequality

) 2 T
SinX >—X, O<X<E’

T
in (4.10) ,consequently we obtain
2 (t) cmﬁf 1 Ch® %f L _<cnt
i 4 (7m(N-k) ? |<:1(N—k)2
z° 2N
(]

5. NUMERICAL EXAMPLE AND CONCLUSION

Consider the problem

ou o 82 . 52

PRy 2+tu(xt 1)-sin(zx)(e +17),(x,t) €[0,1]%(0,2],
u(x,t)zsin(nx), (X,t)e[O,l]x[—l,O],

u(0,t)=u(,t)=0, te(0,2].

The exact solution of this problem is



Error Estimates for Differential Difference Schemes 291

e sin(7x),
t+7?

(e (27° +67* +57° +1)/ 7° —((22° + 67" +67° + 2)e—7°) [(1+ 7°)

te(0,1]

u(x,t)=
+e' (L+1/ 2%+ 2te(n? +1) +t% (% +1)-D)/(L+2*))e sin(xx), te(L2]

To solve this problem numerically, we use the appropriate Runge-Kutta method. The
spatial and time steps are both taken to be 0.1.The values for exact and numerical
solutions and appropriate pointwise errors are shown in Table 1 and Table 2.

Table 1. The results on [0,1]x[0,1]

(X,t) Exact Solution R.K. Approximation Pointwise Error
(0.1,0.1) 0.2796101393 027965712282 4.698352x10°°
(0.2,0.2) 0.4812378623 0.48132723027 8.936797x 10~
(0.3,0.3) 05993345303 05994575349 1.230046x10°°
(0.4,0.4) 0.6375122478 0.6376568482 1.446004x10~
(0.5,0.5) 0.6065306597 0.6066827016 1.520419x107
(0.6,0.6) 0.5219508827 0.5220954831 1.446004x107*
(0.7,0.7) 0.4017459499 0.4018689545 1.230046x10~*
(0.8,0.8) 0.2641089385 0.26419830647 8.936797x10°°
(0.9,0.9) 0.1256369343 0.12568391782 4.698352x10°°
Table 2. The results on [0,1]x[1,2]

(X,t) Exact Solution R.K. Approximation Pointwise Error
(0.1,1.1) 16.4311515638 16.4312156615 6.40977x10°°

(0.2,1.2) 28.540363147 28.5404850681 1.219211x10™*
(0.3,1.3) 35.872352318 35.872520128 1.678100x107*
(0.4,1.4) 385102577648 385104550372 1.972724x10~*
(0.5,1.5) 36.9781050461 36.9783124708 2 074245x10~
(0.6,1.6) 32.1168015304 32.1169988028 1.972724x107
0.7,1.7) 24.9500651436 24.9502329536 1.678100x107
(0.8,1.8) 16.5549350971 16.5550570182 1219211x10~
(0.9,1.9) 7.9486324554 7.9486965531 6.409770x10°°

It can be concluded that numerical results are consistent with the theoretical results.
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