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Abstract- We consider the one dimensional initial-boundary Sobolev problem with 

delay. For solving this problem numerically, we construct fourth order differential-

difference scheme and obtain the error estimate for its solution. Further we use the 

appropriate Runge-Kutta method for the realization of our differential-difference 

problem. 
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1. INTRODUCTION 

 

We consider the initial-boundary value problem for pseudo-parabolic differential 

equation with delay in the domain  0,Q T ;  0,l  , (0, ]Q T ,  0,l   
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where 0a   , ,  ,  b c d , f and   are sufficiently smooth  functions satisfying certain 

regularity conditions to be specified, 0r   represents the delay parameter.  

 Equations of this type arise in many areas of mechanics and physics. They are 

used to study heat conduction [7], homogeneous fluid flow in fissured rocks [5], shear 

in second order fluids [12,19] and other physical models. The important characteristic 

of these models is that they express the conservation of a certain quantity (mass, 

momentum, heat, etc.) in any sub-domain.  For a discussion of existence and uniqueness 

results of pseudo-parabolic equations see [6,8,13,18]. Various finite difference schemes 

have been constructed to treat such problems [1-4] For example in [10] two difference 

approximation schemes to a nonlinear pseudo-parabolic equation are developed. Each 

of these schemes possesses a unique solution which can be obtained by an iterative 

procedure. Further in [17] two difference streamline diffusion schemes for solving 

linear Sobolev equations with convection-dominated term are given. We can see other 

numerical methods  of this type of equations in [11, 15] (see also the references cited in 

them). In [9] a Crank-Nicolson-Galerkin approximation with extrapolated coefficients is 

presented for three cases for the nonlinear Sobolev equation along with a conjugate 
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gradient iterative procedure which can be used efficiently to solve the different linear 

systems of algebraic equations arising at each step from the Galerkin method. In [20] 

the author study a finite volume element approximation of pseudo-parabolic equations 

in three spatial dimensions. 

 In this study, we use the method of lines for the discretization in space variable 

for the problem (1.1)-(1.3). The method of lines is a general technique for solving 

partial differential equations by typically using finite difference relationships for the 

spatial derivatives or the time derivative. Our aim is to get a fourth order accurate 

differential-difference scheme and to establish the error estimate for its solution.  

 

2. CONSTRUCTION OF THE SCHEME 

 

On the  , we introduce the uniform mesh  

 ,  1,2,..., 1,  /ih x ih i N h l N       

and denote  
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To construct the difference scheme, we will use the following relation which is valid for 
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Let ix x  in (1) 
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Using formula (4) in (5), we obtain 
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Taking into account the following relations 
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and neglecting the remainder term iR  in (6), we propose the following differential-

difference scheme 
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For the error function      i i iz t y t u t  , from the relations (6)-(8) and (9)-(11), we 

have the following differential-difference problem 
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3. A PRIORI ESTIMATE 

 

In this section, we give a lemma which is used in the next section for establishing the 

error estimate 

Lemma 3.1. Let  , ,  0,a b f C T  and  ,0C r  . Then the solution of the following 

initial value problem 

( ) ( ) ( ) ( ) ( ) ( )v t a t v t b t v t r f t     , 0 t T  ,                                         (15)                   

( ) ( )v t t , 0r t   ,                                                (16)     

provides the following inequality  
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Proof.  For the solution of (15)-(16), we can write  
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From this relation, we get 
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After denoting  ( )t v t  , the inequality (18) reduces to 
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From here, by virtue of Gronwall’s inequality, we easily arrive at (17).                  

   
 

4. THE ERROR ESTIMATE 

 

Now we give the main result of this paper. 

Theorem 4.1. Let the derivatives 
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 where C  is a constant which is independent of h . 

 

Proof. Let         1 2 1, ,...,
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expressed in vector form as 
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The matrix M  can be diagonalized as [ 14, 16 ] 
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Multiplying equation (21) on the left by B  and denoting 

          1 2 1, ,...,
T

NBZ t t t t t     ,  

          1 2 1, ,...,
T

Nt t tB t t       , 
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If we rewrite (23) in the form 
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and after then we apply  Lemma 3.1, we conclude  
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Also as 
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Taking then into account (27) in (26), we get 
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In the similar way, for sB  we obtain 
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Taking into account the following inequality  
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5. NUMERICAL EXAMPLE AND CONCLUSION 

 

 Consider  the  problem 
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The exact solution of this problem is  
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To solve this problem numerically, we use the appropriate Runge-Kutta method. The 

spatial and time steps are both taken to be 0.1 .The  values for exact and numerical 

solutions and appropriate pointwise errors  are shown in Table 1 and Table 2. 

 

Table 1. The results on [0,1] [0,1]  

 ,x t  Exact Solution R.K. Approximation Pointwise Error 

(0.1,0.1) 0.2796101393 0.27965712282 4.698352x
510

 

(0.2,0.2) 0.4812378623 0.48132723027 8.936797x
510

 

(0.3,0.3) 0.5993345303 0.5994575349 1.230046x
510

 

(0.4,0.4) 0.6375122478 0.6376568482 1.446004x
410

 

(0.5,0.5) 0.6065306597 0.6066827016 1.520419x
410

 

(0.6,0.6) 0.5219508827 0.5220954831 1.446004x
410

 

(0.7,0.7) 0.4017459499 0.4018689545 1.230046x
410

 

(0.8,0.8) 0.2641089385 0.26419830647 8.936797x
510

 

(0.9,0.9) 0.1256369343 0.12568391782 4.698352x
510

 

           

Table 2. The results on [0,1] [1,2]  

 ,x t  Exact Solution R.K. Approximation Pointwise Error 

(0.1,1.1) 16.4311515638 16.4312156615 6.40977x
510

 

(0.2,1.2) 28.540363147 28.5404850681 1.219211x
410

 

(0.3,1.3) 35.872352318 35.872520128 1.678100x
410

 

(0.4,1.4) 38.5102577648 38.5104550372 1.972724x
410

 

(0.5,1.5) 36.9781050461 36.9783124708 2.074245x
410

 

(0.6,1.6) 32.1168015304 32.1169988028 1.972724x
410

 

(0.7,1.7) 24.9500651436 24.9502329536 1.678100x
410

 

(0.8,1.8) 16.5549350971 16.5550570182 1.219211x
410

 

(0.9,1.9) 7.9486324554 7.9486965531 6.409770x
510

 

       It can be concluded that numerical results are consistent with the theoretical results. 
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