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1. INTRODUCTION 

 

Fixed sample size design is not useful in experiment that subjects enter to the study 

sequentially. Consequently it is possible to analyze the accumulated data sequentially. 

Wald [1], introduced sequential analysis and demonstrating that sequential probability 

ratio test (SPRT) require substantially fewer observations than a fixed sample test of 

equivalent statistical power. 

SPRT is widely used in clinical trials, quality control studies and life tests. Also 

generally sequential designs cannot be used in such situations.  In this case analyzing 

the accumulated data in groups is the most convenient way.  

Data are analyzed after groups of observations are entered into a group sequential 

design. However group sequential designs are generally more practical and they provide 

much of the saving possible from sequential designs [2]. 

Group sequential designs are widely used in clinical trials. In most randomized 

clinical trials with sequential patient entry, fixed sample size design is unjustified on 

ethical grounds and sequential designs are often impractical. 

Two and three stage design is the simplest form of a group sequential design. Case et al. 

[3], [4], developed optimal restricted two (OR2) and three (OR3) stage design  that have 

the restriction of using the fixed sample critical value at the final stage. 
 
 

In general, optimal restricted two and three-stage designs has been proposed for 

normally and binomial response variable. In this study, a optimal restricted designs 

when response variable has an inverse Gaussian distribution with known scale 

parameter is proposed. 

Inverse Gaussian distribution function is a very useful alternative to the real life time 

distribution such as gamma, log-normal and Weibull distributions. The distribution has 

a wide application area in clinical trials, quality and reliability theory, industrial 

engineering applications and life tests. In those areas, outcome variable can be measured 

in series because data is accumulated sequentially. [5, 6] 
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 Edgeman and Salzberg [6] and Edgeman and Lin [7] developed the sequential 

probability ratio test for the inverse Gaussian mean, and its application to sequential 

sampling plans. Bacanlı and Demirhan [8] suggested the group sequential test when 

response variable has an inverse Gaussian distribution with known scale parameter. 

This study is organized as follows: In section 2, the optimal restricted designs are 

described. In section 3, SPRT for the mean of inverse Gaussian distribution is briefly 

reviewed and it is shown that optimal restricted designs can be used in inverse Gaussian 

mean. Example and the optimal restricted designs comparison to other design are given 

in section 4.  

 

2.  OPTIMAL RESTRICTED DESIGNS    

 

In this section, firstly OR2 design is examined for response variable has normal 

distribution with mean (θ) and known variance (σ
2
). 

For testing 00 θθ :H   against H1: 0θθ  , the OR2 design is defined as follows; 

 

Stage I: Accrue  1n  observations and calculate test statistic, 

 

θ̂

0
1

σ

θθ̂
Z


                       (1)  

where θ̂  is calculated from data on the first 1n  observation. If 11 CZ  ; Accept 0H , if 

21 CZ  ; Reject 0H , otherwise; continue the second stage. 

 

Stage 2: Accrue an additional 2n observations. Let 21 nnn   and calculate, 
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where ̂  is computed from data on all n observations. If 3CZ  ; Accept 0H , otherwise, 

reject 0H  [2]. 

Z1 and Z are distributed standard normal distribution and their joint distribution is 

bivariate normal with zero means, unit variances, and correlation (n1/n)
1/2

 .The  

maximum sample size for the two-stage design is n and is realized whenever a second 

stage is necessary. The expected sample size (ESS) of the two-stage design is given by 

equation (3): 

 

               )(P)p1(1nESS S                                                (3) 

 

where  SP  denote the probability that the trial will be stopped at the first stage, and p 

is the rate of the number of observations at the first stage to the number of total 

observations at the second stage nnp 1 .  For some studies it might be practical to 

choose equal samples at each stage. Therefore, if p=0.50, each stage have equal sizes.  
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value can be computed for  10  ,   where 0  is the  value when 0H  is true; 1  is the  

value when 1H  is true.  

There are five unknown parameters in the two-stage design, namely: 1n , 2n , 1C , 2C  

and 3C . The critical value at the second stage, 3C , will be set to equal that of the fixed 

sample test 

 

        ))
2

1((or    )1(C 11

3


                                             (4)   

where  x  denotes the standard normal distribution function. The other four 

parameters of interest are chosen to satisfy the two equations: 

 

         )p;,C;C,C(B)C(Φ1α 3212                                                                  (5) 

 

        )p;,uC;puC,puC(B)puC(Φ1β1 3212                        (6) 

 

where,  

       dz dyzpyz2yp121expp1π21p)d,c,b,B(a,

b

a

d

c

22

                        (7) 

and    01  nu . 

Equation (5) and (6) are solved iteratively by numerical integration of the bivariate 

normal distribution using a double precision function [3, 9].   

With five parameters and only three constraints given by equations (4), (5), (6) 

optimality criteria are used to determine the parameter values. So, this test is called 

optimal restricted two-stage design. In this study, we have examined Bayes criteria.  

 

Bayes Criterion:  

Minimize a weighted average of the ESS under 0H  and the 1H , 

 

             minimize        101  wESSESSwESSw                                                (8) 

    

Using a weight of 0 for this criterion gives the most efficient designs if the null 

hypothesis is true while a weight of 1 gives the most efficient designs if the specified 

alternative is true .  

The optimal design parameters, the probabilities ps(), maximum (n) and expected 

sample sizes (ESS) obtained using the bayes criteria are listed in Table 1 for p=0.50 and 

several values of    and 1 . In tables, fn is the sample size for a fixed sample 

design[3,9]. 

 

The sample size required for a OR2 design is obtained by multiplying the tabled 

values by 2 =/(1-0)
2
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Table 1. Optimal restricted two-stage one- sided designs for bayes criterion 

at given  0.01, 0.05   1 0.80, 0.90   p=0.50 

w  1- p C1 C2 C3 nf
a 

n
a 

ESS(0)
a 

ESS(1)
a 

 0.01 0.80 0.5 1.052 2.833 2.326 10.036 10.849 6.212 8.641 

0  0.90 0.5 1.014 2.856 2.326 13.017 14.085 8.123 10.778 

 0.05 0.80 0.5 0.638 2.150 1.645 6.183 6.907 4.303 5.194 

  0.90 0.5 0.595 2.178 1.645 8.564 9.558 6.029 6.886 

 0.01 0.80 0.5 1.310 2.690 2.326 10.036 11.612 6.343 8.561 

1  0.90 0.5 1.253 2.720 2.326 13.017 15.009 8.266 10.687 

 0.05 0.80 0.5 0.768 2.066 1.645 6.183 7.203 4.328 5.175 

  0.90 0.5 0.700 2.109 1.645 8.564 9.874 6.046 6.864 
    a

 Multiply each value by /(1-0)
2
  

 

OR3 design is an extension of the OR2 design to three stages. However the sample 

sizes must be equal for each stage of the design [4].  

The OR3 design for normal mean testing is given as follows: 

 

Stage I: Accure  n1 observations and calculate  test statistics , 

  






ˆ

0

1

ˆ 
Z                             (9)  

Where ̂   is calculated from data on the first n1 observation.  If 11 CZ  ; Accept 0H , if 

21 CZ  ; Reject 0H  , otherwise; continue the second stage. 

 

Stage 2: Accrue an additional 2n  observation. Let 21 nnn   and calculate, 
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where ̂  is computed from data on all n observations. If 32 CZ  ; Accept 0H , if 

42 CZ  ; Reject 0H  , otherwise; continue the second stage. 

 

Stage 3: Accrue an additional n3 observation. Let 21 nnn  +n3 and calculate, 

         

θ̂

0

3
σ

θθ̂
Z


                                                (11) 

where ̂  is computed from data on all n observations. If 53 CZ  ; Accept 0H , 

otherwise, reject 0H . 

 

There are eight unknown parameters in the OR3 design, namely n1, n2, n3,C1, C2, C3, 

C4, and  C5.  The critical value at the final stage, will be set equal to that of the fixed 

sample test.  

OR3 design considers the case of equal sample sizes at each stage, reducing the 

number of unknown parameters to six.                             
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With six parameters and only two constraints, parameter values are chosen to min 

ESS() for Bayes criteria. Therefore the algorithm used to obtain the parameter values 

for OR3 design is olmost identical in the OR2 [4, 9].  

The design parameters  and the sample sizes obtained using Bayes criteria for OR3  

design are given in  Table 2 for  0.01, 0.05   1 0.80, 0.90. 

 

Table 2. Optimal restricted three-stage one- sided designs for bayes criterion 

at given  0.01, 0.05   1 0.80, 0.90 

w   1  C1 C2 C3 C4 C5 nf
a 

n
a 

ESS(0)
a 

ESS(1)
a 

0 

0.01 0.80 0.738 3.819 1.338 2.598 2.326 10.036 11.642 5.018 8.430 

 0.90 0.649 3.747 1.335 2.632 2.326 13.017 15.100 6.639 10.544 

0.05 0.80 0.342 2.539 0.877 1.945 1.645 6.183 7.543 3.710 4.946 

 0.90 0.234 2.470 0.879 2.015 1.645 8.564 10.362 5.310 6.423 

1 

0.01 0.80 0.816 2.796 1.724 2.661 2.326 10.036 12.646 5.219 8.029 

 0.90 0.535 2.719 1.907 2.696 2.326 13.017 16.662 7.290 9.763 

0.05 0.80 0.312 2.150 1.184 2.023 1.645 6.183 7.976 3.833 4.823 

 0.90 0.012 2.095 1.313 2.067 1.645 8.564 11.048 5.738 6.252 
    a

 Multiply each value by /(1-0)
2
 

 

3. OPTIMAL RESTRICTED DESIGNS FOR THE MEAN OF AN INVERSE                     

GAUSSIAN DISTRIBUTION 

 

Let x is an inverse Gaussian (IG) distributed random variable and its probability 

density function is defined as follows; 
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Here   is the mean of the distribution. So it is a location parameter and   is a scale 

parameter [5]. 

Given  a sequence of observations ,, 21 xx  from inverse Gaussian distribution 

(12),  suppose  one wishes to test the simple null hypothesis H0:0  against the simple 

alternative  H1: 1  (1  0 ) , when λ is  known. The SPRT for testing H0 is defined 

as follows:  

 

 Let 
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At the nth stage, accept 0H  if Bz
n

i

i ln 
1
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Aln      ln continue sampling by taking an additional observation. If    and    
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are the type I and type II errors respectively, then according to SPRT, A and B are 

approximately given by   )1( A   and )1(  B [1, 6]. 

The average sample number (ASN) function under H0 and H1  is approximately  

given ( 14) and (15), 
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IG distribution is related to normal distribution. This relation was given with 

following theorem in Chikara and Folks [5], which establishes a basic relationship 

between IG and the normal. 

 

Theorem: Let   XXY  / . Then the pdf of Y is given by 
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The transformation    X/XY    is one-to-one and as x varies from 0 to 

 , y varies from   to  . 

       Then the cumulative distribution function  yF  of Y  is  

 

                   2/2 y/4eyyF    ,           y  

 

where   is the standard normal distribution function. In this case    yyF   as 

  / . Because of this and because of the one-to-one relationship between x  

and y , one finds that the distribution of X  is asymptotically normal with mean   and 

variance  /3  [5]. 

 Therefore fixed sample test for the mean of an inverse Gaussian distribution based 

on the standard normal distribution. 

Given a random sample x1, x2, ,…, xn drawn from IG distribution. Consider the 

testing of the hypothesis, 00 :H  against 01 :H  , when   is known, the test 

statistic for the mean is defined as, 
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Here,  λn,μIG~x 0 . The test statistic is compared with 2α1Z  = 






 


2
11  where 

 denotes the standard normal distribution function. Consequently if 21  ZZ  then 

0H is rejected for two sided hypothesis [5, 8].                                  

In the sense of this information, we modify restricted optimal two-stage design for 

the mean of an inverse Gaussian distribution. Test statistics of OR2 can be defined from 

equation (1), (2), and (17), 

 

Stage I: Accrue 1n  observations and calculate test statistic, 
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Where x   is calculated from data on the first n1 observation.   

 

Stage II:  Accrue additional 2n observations. Let 21 nnn   and calculate, 
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Where x   is calculated from data on the first n1 observation.  

 

According to Theorem 1, Z1 and Z have a standard normal distribution. Therefore, it 

is suggested that the OR2 and OR3 designs can be used for testing inverse Gaussian 

distribution mean with known scale parameter.  

OR3 design is an extension of OR2 design to three stages and test statistics Zi can be 

obtained as given OR2  design.   

In this case, design parameters for OR2 and OR3 designs are the same as normal 

distribution parameters. However, the sample size is obtained by multiplying the values 

(Table1-2) by 
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. Therefore, the only change in design is the sample 
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4. COMPARISON WITH OTHER DESIGN AND DISCUSSION 

  

In this section, the comparison of optimal restricted designs (OR2 and OR3) with 

fixed sample design and SPRT for inverse Gaussian distribution have been examined 

with an example.   

As an example, suppose 03,0μ:H0   against  05,0μ:H1   and 1,0λ  =0.05 1-

=0.90 Results are given in Table 3. 

 

                Table 3. Comparison of fixed, SPRT and OR2, OR3 designs 

Design     n ESS(H0)                   ESS(H1) R(1) 

Fixed sample 

 

SPRT 

9.634 

 

     
 

9.634 

  

7.667                                      

9.634 

 

5.346 

 

- 

 

- 

OR2 

 

W=0 

W=1 

 

 

10.753 

11.108 

 

 

6.783 

6.802  

 

 

7.747 

7.722 

 

   

 0.44 

 0.46 

OR3 

 

W=0 

W=1 

 

 

11.657 

12.429 

 

 

5.974 

6.455  

 

 

7.226 

7.034 

 

   

 0.56 

 0.60 

It is well known that the SPRT has the minimum ESS(H1), but it hasn’t got a finite 

maximum number of observation. Furthermore OR3 design needs a smaller sample size 

than other designs. In this study, ıt is seen that these results are also valid for inverse 

Gaussian distribution [1,4]. 

Let SSPRT (1) = nf – ESSSPRT (1)  i=0,1 denote the savings possible with the use of 

the SPRT design. Also S2 (1) = nf – ESS2 (1)  and S3(1)  = nf – ESS3 (1)   denote the 

savings possible with optimal restricted two and three stage designs. Then the ratios 

R2= )(S)(S 1SPRT12   and R3= )(S)(S 1SPRT13   give the proportion of the possible 

savings realized with two and three–stage designs. A comparison of sequential design 

and the optimal restricted design according to proportion of the possible savings is 

given Table 3. 

In Table 3, it is clear that OR2 design can provide approximately 50% of the savings 

that would have been realized with SPRT design. OR3 design provides as much as 60% 

of the possible savings. 

Other examples with different choices of  , , , and  could readily be presented 

to illustrate the same general principle.  

Case at all [4], compared those designs for the mean of normal distribution and 

obtained similar results. Therefore, as for normal distribution, it is advantageous to use 

optimal restricted two and three-stage design for the mean of inverse Gaussian 

distribution. 
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