SOME I-CONVERGENT SEQUENCE SPACES OF FUZZY NUMBERS DEFINED BY INFINITE MATRIX

Ekrem Savaş
Department of Mathematics, Istanbul Commerce University, Üsküdar-İstanbul, Turkey
ekremsavas@yahoo.com

Abstract

In this paper we introduce and study some new sequence spaces of fuzzy numbers defined by I-convergence using the sequences of Orlicz functions, infinite matrix. We study some basic topological and algebraic properties of these spaces. Also we investigate the relations related to these spaces.

Key Words- Ideal, I -convergent, infinite matrix, Orlicz function, fuzzy number.

1. INTRODUCTION

The theory of sequence of fuzzy numbers was first introduced by Matloka [10]. Matloka introduced bounded and convergent sequence of fuzzy numbers and studied some of their properties and showed that every convergent sequence of fuzzy numbers is bounded. Nanda [12] studied the sequence of fuzzy numbers and showed that the set of all convergent sequence of fuzzy numbers forms a complete metric space. J. S. Kwon [8] introduced the definition of strongly p-Cesaro summability of sequence of fuzzy numbers. Savas [17] introduced and discussed double convergent sequence of fuzzy numbers and showed that the set of all double convergent sequence of fuzzy numbers is complete. Savas [24] studied some equivalent alternative conditions for a sequence of fuzzy numbers to be statistically Cauchy and he continued to study the statistical convergence in [22, 25]. Recently, Mursaleen and Basarir [11] introduced and studied some new sequence space of fuzzy numbers generated by non-negative regular matrix. Also Savas and Mursaleen [21] defined statistically convergent and statistically Cauchy for double sequence of fuzzy numbers.

Different classes of sequence of fuzzy real numbers have been discussed by Nuray and Savas [13], Altinok et al. [1], Hazarika and Savas [2], Kumar and Kumar [7], Savas ([22], [23]), Savas and Mursaleen [21], Joong-Sung [8] and many others. The notion of I-convergence initially introduced by Kostyrko et al. [6]. More investigations in this direction and more applications of ideals can be found in [18, 19, $20,30,31,32$] where many important references can be found.

Let X be a non-empty set, then a family of sets $I \subset 2^{X}$ (the class of all subsets of X) is called an ideal if and only if for each $A, B \in I$, we have $A \cup B \in I$ and for each $A \in I$ and each $B \subset A$, we have $B \in I$. A non-empty family of sets $F \subset 2^{X}$ is a filter on X if and only if $\varnothing \notin F$, for each $A, B \in F$, we have $A \cap B \in F$ and each $A \in F$ and each $A \subset B$, we have $B \in F$. An ideal I is called non-trivial ideal if $I \neq \varnothing \mathrm{I}$ and $X \notin I$. Clearly
$I \subset 2^{X}$ is a non-trivial ideal if and only if $F=F(I)=\{X-A: A \in I\}$ is a filter on X. A non-trivial ideal $I \subset 2^{X}$ is called admissible if and only if $\{\{x\}: x \in X\} \subset I$. A non-trivial ideal I is maximal if there cannot exists any non-trivial ideal $J \neq I$ containing I as a subset. Further details on ideals of 2^{X} can be found in Kostyrko et al. [22].

Recall in [5] that an Orlicz function M is continuous, convex, nondecreasing function such that $M(0)=0$ and $M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of Orlicz function is replaced by $M(x+y)=M(x)+M(y)$ then this function is called the modulus function and characterized by Ruckle [16]. An Orlicz function M is said to satisfy Δ_{2}-condition for all values of u, if there exists $K>0$ such that $M(2 u) \leq K M(u)$, $u \geq 0$.

Lindenstrauss and Tzafriri [9] studied some Orlicz type sequence spaces defined as follows:

$$
\ell_{M}=\left\{\left(x_{k}\right) \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\} .
$$

The space ℓ_{M} with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\} .
$$

becomes a Banach space which is called an Orlicz sequence space. The space ℓ_{M} is closely related to the space ℓ_{p} which is an Orlicz sequence space with $M(t)=|t|^{p}$, for $1 \leq p<\infty$.

The following well-known inequality will be used throughout the article. Let $p=\left(p_{k}\right)$ be any sequence of positive real numbers with $0 \leq p_{k} \leq \sup _{k} p_{k}=H, D=\max \{1$, $\left.2^{H-1}\right\}$ then

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)
$$

for all $k \in N$ and $a_{k}, b_{k} \in C$. Also $\left|a_{k}\right|^{p_{k}} \leq \max \left\{1,|a|^{H}\right\}$ for all $a \in C$.
In the later stage different classes of Orlicz sequence spaces were introduced and studied by Parashar and Choudhary [14], Savas ([26]-[29]) and many others.

Throughout the article w^{F} denote the class of all fuzzy real-valued sequence space. Also N and R denote the set of positive integers and set of real numbers respectively.

In this paper, we study some new sequence spaces of fuzzy numbers defined by using I-convergence, the sequence of Orlicz functions and an infinite matrix. We establish inclusion relations between the sequence spaces $w^{I(F)}[A, M, p], w^{I(F)}[A, M, p]_{0}$, $w^{F}[A, M, p]_{\infty}$ and $w^{I(F)}[A, M, p]_{\infty}$ where $p=\left(p_{k}\right)$ denote the sequence of positive real numbers for all $n \in N$ and $M=\left(M_{k}\right)$ be a sequence of Orlicz functions.

2. DEFINITIONS AND NOTATIONS

Before continuing with this paper we present a few definitions and preliminaries.
Given any interval A, we shall denote its end points by \underline{A}, \bar{A} and by D set of all closed bounded intervals on real line R i.e., $D=\{A \subset R: A=\lfloor\underline{A}, \bar{A}\rfloor\}$. For $A, B \in D$ we define $A \leq B$ if and only if $\underline{A} \leq \underline{B}$ and $\bar{A} \leq \bar{B}$ and $d(A, B)=\max \{|\underline{A}-\underline{B}|,|\bar{A}-\bar{B}|\}$.

It is easy to see that d defines a Hausdorff metric on D and (D, d) is a complete metric space. Also \leq partial order on D.

A fuzzy number is a function X from R to $[0,1]$ which satisfying the following conditions (i) X is normal, i.e. there exists an $x_{0} \in R$ such that $X\left(x_{0}\right)=1$; (ii) X is fuzzy convex, i.e. for any $x, y \in R$ and $\lambda \in[0,1], X(\lambda x+(1-\lambda) y) \geq \min \{X(x), Y(y)\}$; (iii) X is upper semi continuous; (iv) The closure of the set $\{x \in R: X(x)>0\}$, denoted by X^{0} is compact.

The properties (i) to (iv) imply that for each $\alpha \in[0,1]$, the α-level set $X^{\alpha}=\{x \in R$: $X(x)>\alpha\}=\left[\underline{X}^{\alpha}, \bar{X}^{\alpha}\right]$ is a non empty compact convex subset of R. Let $L(R)$ denotes the set of all fuzzy numbers. Define a map $\bar{d}: L(R) \times L(R) \rightarrow R$ by $\bar{d}(x, y)=\sup _{\alpha \in[0,1]} d\left(X^{\alpha}, Y^{\alpha}\right)$. Puri and Ralescu [15] proved that $(L(R), \bar{d})$ is a complete metric space.

For $X, Y \in L(R)$, we define $X \leq Y$ if and only if $\underline{X}^{\alpha} \leq \underline{Y}^{\alpha}$ and $\bar{X}^{\alpha}, \bar{Y}^{\alpha}$ for each $\alpha \in[0$, 1], we say that $X<Y$ if $X \leq Y$ and there exist $\alpha_{0} \in[0,1]$ such that $\underline{X}^{\alpha_{0}} \leq \underline{Y}^{\alpha_{0}}$ or $\bar{X}^{\alpha_{0}}, \bar{Y}^{\alpha_{0}}$. The fuzzy number X and Y are said to be incomparable if neither $X \leq Y$ nor $Y \leq X$.

For any $X, Y, Z \in L(R)$, the linear structure of $L(R)$ induced addition $X+Y$ and scalar multiplication $\lambda X, \lambda \in R$, in terms of α-level sets, by $[\mathrm{X}+\mathrm{Y}]^{\alpha}=[\mathrm{X}]^{\alpha}+[\mathrm{Y}]^{\alpha}$ and $[\lambda X]^{\alpha}=\lambda[X]^{\alpha}$ for each $\alpha \in[0,1]$.

Proposition 1.1. If \bar{d} is a translation invariant metric on $L(R)$ then
(i) $\bar{d}(\mathrm{X}+\mathrm{Z}, 0) \leq \bar{d}(\mathrm{X}, 0)+\bar{d}(\mathrm{Y}, 0)$,
(ii) $\bar{d}(\lambda \mathrm{X}, 0) \leq|\lambda| \bar{d}(\mathrm{X}, 0),|\lambda|>1$.

A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to converge to a fuzzy number X_{0} if for every $\varepsilon>0$, there exists a positive integer n_{0} such that $\bar{d}\left(X_{k}, X_{0}\right)<\varepsilon$ for all $n \geq n_{0}$. A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be bounded if the set $\left\{X_{k}: k \in N\right\}$ of fuzzy numbers is bounded.

A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be I-convergent to a fuzzy number X_{0} if for each $\varepsilon>0$ such that

$$
A=\left\{k \in N: \bar{d}\left(X_{k}, X_{0}\right) \geq \varepsilon\right\} \in I .
$$

The fuzzy number X_{0} is called -limit of the sequence $\left(X_{k}\right)$ of fuzzy numbers and we write $I-\lim X_{k}=X_{0}$.
A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be I-bounded if there exists $M>0$ such that $\left\{k \in N: \bar{d}\left(X_{k}, O\right)>M\right\} \in I$.

Let E_{F} be denote the sequence space of fuzzy numbers.

A sequence space E_{F} is said to be solid (or normal) if $\left(Y_{k}\right) \in E_{F}$ whenever $\left(X_{k}\right) \in E_{F}$ and $\left|Y_{k}\right| \leq\left|X_{k}\right|$ for all $k \in N$.

A sequence space E_{F} is said to be monotone if E_{F} contains the canonical preimages of all its step spaces.

Example 2.1. If we take $I=I_{f}=\{A \subseteq N: A$ is a finite subset $\}$. Then I_{f} is a nontrivial admissible ideal of N and the corresponding convergence coincide with the usual convergence.

Example 2.2. If we take $I=I_{\delta}=\{A \subseteq N: \delta(A)=0\}$ where $\delta(A)$ denote the asymptotic density of the set A. Then I_{d} is a non-trivial admissible ideal of N and the corresponding convergence coincide with the statistical convergence.

Lemma 2.1. A sequence space E_{F} is normal implies E_{F} is monotone. (For the crisp set case, one may refer to Kamthan and Gupta (see, [4]).

3. SOME NEW SEQUENCE SPACES OF FUZZY NUMBERS

In this section, using the sequence of Orlicz functions, an infinite matrix and I convergence; we introduced the following new sequence spaces and examine some properties of the resulting sequence spaces. Let I be an admissible ideal of N and let $p=\left(p_{k}\right)$ bea sequence of positive real numbers for all $k \in N$, and $A=\left(a_{n k}\right)$ an infinite matrix. Let $M=\left(M_{k}\right)$ be a sequence Orlicz functions and $X=\left(X_{k}\right)$ be a sequence of fuzzy numbers, we define the following new sequence spaces:

$$
\begin{aligned}
& w^{I(F)}[A, M, p]=\left\{\left(X_{k}\right) \in w^{F}: \forall \boldsymbol{\varepsilon}>0,\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\} \in I, \text { for some } \boldsymbol{\rho}>0 \text { and } X_{0} \in L(R)\right\}, \\
& w^{I(F)}[A, M, p]_{0}=\left\{\left(X_{k}\right) \in w^{F}: \forall \boldsymbol{\varepsilon}>0,\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\boldsymbol{\rho}}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\} \in I, \text { for some } \boldsymbol{\rho}>0\right\}, \\
& w^{F}[A, M, p]_{\infty}=\left\{\left(X_{k}\right) \in w^{F}: \sup _{n} \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}}<\infty, \text { for some } \boldsymbol{\rho}>0\right\},
\end{aligned}
$$

and

$$
w^{I(F)}[A, M, p]_{\infty}=\left\{\left(X_{k}\right) \in w^{F}: \exists K>0 \text { s.t. },\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}} \geq K\right\} \in I, \text { for some } \boldsymbol{\rho}>0\right\} \text {, }
$$

Let us consider a few special cases of the above sets.
(i) If $M_{k}(x)=x$ for all $k \in N$, then the above classes of sequences are denoted by $w^{l(F)}[A, p], w^{l(F)}[A, p]_{0}, w^{F}[A, p]_{\infty}$, and $w^{I(F)}[A, p]_{\infty}$, respectively.
(iii) If $p=\left(p_{k}\right)=(1,1,1, \ldots)$, then we denote the above spaces by $w^{l(F)}[A, M], w^{l(F)}[A$, $M]_{0}$,
$w^{F}[A, M]_{\infty}$, and $w^{I(F)}[A, M]_{\infty}$.
(iv) If we take $A=(C, 1)$,i.e., the Cesaro matrix, then the above classes of sequences are denoted by $w^{I(F)}[w, M, p], w^{I(F)}[w, M, p]_{0}, w^{F}[w, M, p]_{\infty}$, and $w^{I(F)}[\mathrm{w}, M, p]_{\infty}$, respectively.
v) If we take $A=\left(a_{n k}\right)$ is a de la Valeepoussin mean, i.e.,

$$
a_{n k}=\left\{\begin{array}{ccc}
\frac{1}{\lambda_{n}} & ; & \text { if } k \in I_{n}=\left[n-\lambda_{n}+1, n\right] \\
0 & ; & \text { otherwise }
\end{array}\right\}
$$

where $\left(\lambda_{n}\right)$ is a non-decreasing sequence of positive numbers tending to ∞ and $\lambda_{n+1} \leq \lambda_{n}+1, \lambda_{I}=1$, then the above classes of sequences are denoted by $w_{\lambda}{ }^{I(F)}[M, p]$, $w_{\lambda}{ }^{I(F)}[M, p]_{0}, w_{\lambda}{ }^{F}[M, p]_{\infty}$, and $w_{\lambda}{ }^{I(F)}[M, p]_{\infty}$, respectively.
(vi) By a lacunary $\theta=\left(k_{r}\right) ; r=0,1,2, \ldots$ where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1}$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $h_{r}=k_{r}-k_{r-1}$. As a final illustration let

$$
a_{n k}=\left\{\begin{array}{ccc}
\frac{1}{h_{r}} & ; & \text { if } k_{r-1}<k<k_{r}, \\
0 & ; & \text { otherwise }
\end{array}\right\}
$$

Then we denote the above classes of sequences by $w_{\theta}{ }^{I(F)}[\mathrm{A}, M, p], w_{\theta}{ }^{I(F)}[M, p]_{0}$, $w_{\theta}{ }^{F}[M, p]_{\infty}$, and $w_{\theta}{ }^{I(F)}[M, p]_{\infty}$, respectively.
(vii) If $I=I_{f}$, then we obtain

$$
\begin{aligned}
& w^{F}[A, M, p]=\left\{\left(X_{k}\right) \in w^{F}: \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}}=0, \text { for some } \boldsymbol{\rho}>0 \text { and } X_{0} \in L(R)\right\}, \\
& w^{F}[A, M, p]_{0}=\left\{\left(X_{k}\right) \in w^{F}: \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}}=0, \text { for some } \rho>0\right\}, \\
& w^{F}[A, M, p]_{\infty}=\left\{\left(X_{k}\right) \in w^{F}: \sup _{n} \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}}<\infty, \text { for some } \rho>0\right\},
\end{aligned}
$$

(viii) If $I=I_{\delta}$ is an admissible ideal of N, then we have

$$
\begin{aligned}
& w^{\prime(F)}\left[A, M, \Delta^{m}, p\right]=\left\{\left(X_{k}\right) \in w^{F}: \forall \varepsilon>0,\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \varepsilon\right\} \in I_{\delta}, \text { for some } \rho>0 \text { and } X_{0} \in L(R)\right\}, \\
& w^{I(F)}\left[A, M, \Delta^{m}, p\right]_{0}=\left\{\left(X_{k}\right) \in w^{F}: \forall \varepsilon>0,\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \varepsilon\right\} \in I_{\delta}, \text { for some } \rho>0\right\},
\end{aligned}
$$

and

$$
w^{I(F)}\left[A, M, \Delta^{m}, p\right]_{\infty}=\left\{\left(X_{k}\right) \in w^{F}: \exists K>0 \text { s.t. }\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}} \geq K\right\} \in I_{\delta}, \text { for some } \rho>0\right\}
$$ If $X=\left(X_{k}\right) \in w^{F}[A, M, p]$ then we say that $X=\left(X_{k}\right)$ is strongly (p)- Cesaro convergent with respect to the sequence of Orlicz functions M.

4. MAIN RESULTS

In this section, we examine the basic topological and algebraic properties of the new sequence spaces and obtain the inclusion relation related to these spaces.

Theorem 4.1. Let $\left(p_{k}\right)$ be a bounded sequence. Then the sequence spaces $w^{I(F)}[A, M, p]$, $w^{I(F)}[A, M, p]_{0}, w^{I(F)}[A, M, p]_{\infty}$ are linear spaces.

Proof. We shall prove the result for the space $w_{\theta}{ }^{I(F)}[\mathrm{A}, M, p]_{0}$ only and the others can be proved in similar way.

Let $X=\left(X_{k}\right)$ and $Y=\left(Y_{k}\right)$ be two elements in $w_{\theta}{ }^{I(F)}[\mathrm{A}, M, p]_{0}$. Then there exist $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
A_{\frac{\varepsilon}{2}}=\left\{r \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho_{1}}\right)\right]^{p_{k}} \geq \frac{\varepsilon}{2}\right\} \in I
$$

and

$$
B_{\frac{\varepsilon}{2}}=\left\{r \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(Y_{k}, \overline{0}\right)}{\rho_{2}}\right)\right]^{p_{k}} \geq \frac{\varepsilon}{2}\right\} \in I
$$

Let α, β be two scalars. By the continuity of the function $\mathrm{M}=\left(M_{k}\right)$ the following inequality holds:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(\boldsymbol{\alpha} X_{k}+\boldsymbol{\beta} Y_{k}, \overline{0}\right)}{|\boldsymbol{\alpha}| \boldsymbol{\rho}_{1}+|\boldsymbol{\beta}| \boldsymbol{\rho}_{2}}\right)\right]^{p_{k}} \\
& \leq D \sum_{k=1}^{\infty} a_{n k}\left[\frac{|\boldsymbol{\alpha}|}{|\boldsymbol{\alpha}| \boldsymbol{\rho}_{1}+|\boldsymbol{\beta}| \boldsymbol{\rho}_{2}} M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\boldsymbol{\rho}_{1}}\right)\right]^{p_{k}}+\leq D \sum_{k=1}^{\infty} a_{n k}\left[\frac{|\boldsymbol{\beta}|}{|\boldsymbol{\alpha}| \boldsymbol{\rho}_{1}+|\boldsymbol{\beta}| \boldsymbol{\rho}_{2}} M_{k}\left(\frac{\bar{d}\left(Y_{k}, \overline{0}\right)}{\boldsymbol{\rho}_{2}}\right)\right]^{p_{k}} \\
& \leq D K \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\boldsymbol{\rho}_{1}}\right)\right]^{p_{k}}+D K \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(Y_{k}, \overline{0}\right)}{\boldsymbol{\rho}_{2}}\right)\right]^{p_{k}}
\end{aligned}
$$

$$
\text { where } K=\max \left\{1,\left(\frac{|\alpha|}{|\alpha| \rho_{1}+|\boldsymbol{\beta}| \rho_{2}}\right)^{H},\left(\frac{|\alpha|}{|\boldsymbol{\beta}| \rho_{1}+|\boldsymbol{\beta}| \rho_{2}}\right)^{H}\right\}
$$

From the above relation we obtain the following:

$$
\begin{aligned}
& \left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(\boldsymbol{\alpha} X_{k}+\boldsymbol{\beta} Y_{k}, \overline{0}\right)}{|\boldsymbol{\alpha}| \boldsymbol{\rho}_{1}+|\boldsymbol{\beta}| \boldsymbol{\rho}_{2}}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\} \subseteq \\
& \left\{n \in N: D K \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\boldsymbol{\rho}_{1}}\right)\right]^{p_{k}} \geq \frac{\boldsymbol{\varepsilon}}{2}\right\} \\
& \cup\left\{n \in N: D K \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(Y_{k}, \overline{0}\right)}{\rho_{2}}\right)\right]^{p_{k}} \geq \frac{\varepsilon}{2}\right\} \in I
\end{aligned}
$$

This completes the proof.
Theorem 4.2. $w^{l(F)}[A, M, p], w^{l(F)}[A, M, p]_{0}$, and $w^{I(F)}[A, M, p]_{\infty}$ are linear are linear topological space spaces with the paranorm g defined by

$$
g(X)=\inf \left\{\rho^{\frac{p_{n}}{H}}:\left(\sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}}\right)^{1 / H} \leq 1, \text { for some } \rho>0, n=1,2,3, \ldots\right\}
$$

where $H=\max \left\{1, \sup _{k} p_{k}\right\}$.
Proof. This can be easily verified by using standard techniques and so is omitted.
Theorem 4.3. (a) Let $0<\inf p_{k} \leq p_{k} \leq 1$. Then

$$
w^{l(F)}[A, M, p] \subseteq w^{l(F)}[A, M], w^{l(F)}[A, M, p]_{0} \subseteq w^{l(F)}[A, M]_{0}
$$

(b) Let $1 \leq p_{k} \leq \sup p_{k}<\infty$. Then

$$
w^{I(F)}[A, M] \subseteq w^{I(F)}[A, M, p], w^{I(F)}[A, M]_{0 \subseteq} w^{I(F)}[A, M, p]_{0}
$$

Proof. (a) Let $X=\left(X_{k}\right)$ be an element in $w^{I(F)}[A, M, p]$. Since $0<\inf p_{k} \leq p_{k} \leq 1$ we have

$$
\sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right] \leq \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}}
$$

Therefore

$$
\begin{aligned}
& \left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right] \geq \boldsymbol{\varepsilon}\right\} \\
& \subseteq\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\}
\end{aligned}
$$

The other part can be proved in similar way.
(b) Let $X=\left(X_{k}\right)$ be an element in $w^{l(F)}[A, M, p]$. Since $1 \leq p_{k} \leq \sup p_{k}<\infty$. Then for each $0<\varepsilon<1$ there exists a positive integer n_{0} such that

$$
\sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right] \leq \boldsymbol{\varepsilon}<1 \text { for all } n \geq n_{0}
$$

This implies that

$$
\sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}} \leq \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]
$$

Therefore we have

$$
\begin{aligned}
& \left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\} \subseteq \\
& \subseteq\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, X_{0}\right)}{\rho}\right)\right] \geq \boldsymbol{\varepsilon}\right\} \in I
\end{aligned}
$$

The other part can be proved in similar way.
Proposition 4.4. The sequence spaces $w^{l(F)}[A, M, p]_{0}$. and $w^{I(F)}[A, M, p]_{\infty}$ are normal as well as monotone.

Proof. We give the proof of the theorem for $w^{l(F)}[A, M, p]_{0}$ only. Let $X=$ $\left(X_{k}\right) \in w^{l(F)}[A, M, p]_{0}$ and $Y=\left(Y_{k}\right)$ be such that $\bar{d}\left(Y_{k}, \overline{0}\right) \leq \bar{d}\left(X_{k}, \overline{0}\right)$ for all $k \in N$. Then forgiven $\varepsilon>0$ we have

$$
B=\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(X_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\} \in I .
$$

Again the set

$$
B_{1}=\left\{n \in N: \sum_{k=1}^{\infty} a_{n k}\left[M_{k}\left(\frac{\bar{d}\left(Y_{k}, \overline{0}\right)}{\rho}\right)\right]^{p_{k}} \geq \boldsymbol{\varepsilon}\right\} \subseteq B .
$$

Hence $B_{1} \in I$ and so $Y=\left(Y_{k}\right) \in w^{l(F)}[A, M, p]_{0}$. Thus the space $w^{l(F)}[A, M, p]_{0}$ is normal. Also from the Lemma 2.1, it follows that $w^{l(F)}[A, M, p]_{0}$ is monotone.

5. REFERENCES

1. H. Altinok, R. Colak, M. Et, λ-Difference sequence spaces of fuzzy numbers, Fuzzy Sets and System 160 3128-3139, 2009.
2. B. Hazarika, and E. Savas, Some I -convergent lamda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz, Mathematical and Computer Modelling 54, 2986-2998, 2011.
3. O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12215-229, 1984.
4. P.K. Kamthan, M. Gupta, Sequence spaces and Series, Marcel Dekker, 1980.
5. M. A. Krasnoselskii, Y. B. Rutitsky, Convex functions and Orlicz functions, Groningen, Netharland, 1961.
6. P. Kostyrko, T. Salat, and W. Wilczynski, I-convergence, Real Analysis Exchange 26(2), 669-686, 2000-2001.
7. V. Kumar, K Kumar, On the ideal convergence of sequences of fuzzy numbers, Information Sciencies 178 4670-4678, 2008.
8. J.S. Kwon, On statistical and p-Cesaro convergence of fuzzy numbers, The Korean journal of computational \& applied mathematics 7 195-203, 2000.
9. J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel Journal of Mathematics 101, 379-390, 1971.
10. M. Matloka, Sequences of fuzzy numbers, BUSEFAL 28 28-37, 1986.
11. M. Mursaleen, M. Basarir, On some new sequence spaces of fuzzy numbers, Indian Journal of Pure and Applied Mathematics 34(9) 1351-1357, 2003.
12. S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 123-126, 1989.
13. F. Nuray, S. Savas, Statistical convergence of sequences of fuzzy numbers, Mathematica Slovaca 45 269-273, 1995.
14. S. D. Parashar, B. Choudhury, Sequence space defined by Orlicz functions, Indian Journal of Pure and Applied Mathematics, 25(14) 419-428,1994.
15. M.L. Puri and D. A. Ralescu, Differential of fuzzy numbers, Journal of Mathematical Analysis and Applications 91 552-558, 1983.
16. W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canadian Journal of Mathematics 25 973-978,1973.
17. E. Savas, A note on double sequence of Fuzzy numbers, Turkish Journal of Mathematics, 20 175-178, 1996.
18. E. Savas, $\Delta \mathrm{m}$-strongly summable sequences spaces in 2 -Normed Spaces defined byIdeal Convergence and an Orlicz Function, Applied Mathematics and Computation 217, 271-276, 2010.
19. E. Savas, A-sequence spaces in 2-normed space defined by ideal convergence and anOrlicz function, Abstract and Applied Analysis, Vol. 2011, Article ID 741382, 2011.
20. E. Savas, On some new sequence spaces in 2-normed spaces using Ideal convergence and an Orlicz function, About Journal of Inequalities and Applications, Article Number: 482392 DOI:10.1155/2010/482392, 2010.
21. E. Savas and Mursaleen, On statistically convergent double sequences of fuzzy numbers, Information Sciences 162, 3-4183-192, 2004.
22. E. Savas, A note on sequence of Fuzzy numbers, Information Sciences 124, 297300, 2000.
23. E. Savas, On strongly λ-summable sequences of Fuzzy numbers, Information Sciences 125, 181-186, 2000.
24. E. Savas, On statistically convergent sequence of Fuzzy numbers, Information Sciences 137, 272-282, 2001.
25. E. Savas, Onlacunary statistical convergent sequences of fuzzy numbers, Applied Mathematics Letters 21, 134-141 2008.
26. E. Savas and Richard F. Patterson, An Orlicz extension of some new sequencespaces, Rend. Istit. Mat. Univ. Trieste 37, no. 1-2,145-154, 2006.
27. E. Savas and R. Savas, Some sequence spaces defined by Orlicz functions, Archiv der Mathematik (Brno) 40, 33-40, 2004.
28. E. Savas, R. F. Patterson, Some double lacunary sequence spaces defined by Orliczfunctions, Southeast Asian Bulletin of Mathematics, 35(1), 103-110, 2011.
29. E. Savas, On some new double lacunary sequences spaces via Orlicz function, Journal of Computational Analysis and Applications, 11(3), 423-430, 2009.
30. E. Savas, Pratulananda Das, A generalized statistical convergence via ideals, Applied Mathematics Letters 24 826-830, 2011.
31. E. Savas, Pratulananda Das, S. Dutta, A note on strong matrix summability viaideals, Applied Mathematics Letters 25 (4), 733-738, 2012.
32. E. Savas, On generalized double statistical convergence via ideals, The Fifth Saudi Science Conference, 16-18 April, 2012.
