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Abstract- Recently, in Mathematical and Computational Applications Journal Chiu et 

al. [1] and Chen and Chiu [2] propose an inventory model based on EPQ with rework to 

determine the replenishment lot size and the number of shipments for a vendor-buyer 

integrated production-inventory system. They solve the inventory problem by 

considering both variables as continuous. However, the number of shipments must be 

considered as discrete variable. In this direction, this paper revisits and solves the 

inventory problem of [1-2] considering the decision variables according to their nature. 

Two easy and improved algorithms are proposed which simplify and complement the 

research works of [1-2]. 
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1.INTRODUCTION 

  

The first inventory model called EOQ was derived by Harris in 1913 [3] and five 

years later the EPQ inventory model was proposed by Taft in 1918 [4]. Since then exist 

an enormous interest of researchers in developing extensions of both inventory models. 

Recently, Mathematical and Computational Applications Journal have published some 

extensions of EOQ and EPQ inventory models i.e. [1-2, 5-12]. Also other journals do 

the same, i.e. see the research works of [13-19]; just to name a few papers related to 

EOQ/EPQ inventory models.  

The research works of Chiu et al. [1] and Chen and Chiu [2] deal with the same 

type of inventory problem which is the joint determination of the replenishment lot size 

and the number of shipments for a vendor-buyer integrated production-inventory system 

based on an EPQ model with rework. We read [1-2] with a considerable interest. We 

found that in both papers the authors considered the number of shipments (n) as 

continuous variable and then they round off it in order to obtain the discrete value. This 

action could carry us to a non-optimal solution. In this direction, our paper revisits and 

solves the inventory model of [1-2] considering the decision variables according their 

nature. Two cases are considered: Case 1) the replenishment lot size (Q) continuous and 
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the number of shipments (n) discrete, and Case 2) the replenishment lot size (Q) discrete 

and the number of shipments (n) discrete. For each case we propose an easy to apply 

algorithm. 

 

2. ALGORITHMS TO THE JOINT DETERMINATION OF THE 

REPLENISHMENT LOT SIZE AND NUMBER OF SHIPMENTS 

  

 We refer to the readers to see in Chiu et al. [1] and Chen and Chiu [2] the 

nomenclature, assumptions and full derivation of the total lung-run average costs of the 

inventory system. Chiu et al. [1] and Chen and Chiu [2] develop the following total 

lung-run average costs, here rewritten as follows: 
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Where; 
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Applying the algebraic method of completing perfect squares [20-23] or the well-known 

differential calculus, one can show that when Q is considered as continuous variable 

Equation (1) is minimized at 
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Substituting Equation (7) into Equation (1) and simplifying one obtains total lung-run 

average costs, 
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where, 
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According to García-Laguna et al. [24] the function nf  is minimized when 
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Remember that    is the smallest integer greater than or equal to  ; and    is 

the largest integer less than or equal to , respectively. Certainly, it is easy to show that 

   1   if and only if   is not an integer value. In this situation the optimization 

problem has a unique solution for n  which is nn *  (given by either of the two 

expressions of Equations (10) and (11). Otherwise, the optimization problem has two 

solutions for n  that are nn *  and 1*  nn .  This result was also applied in Cárdenas-

Barrón [25] for developing of the close form for computing the number of shipments for 

the inventory models of Chang [26] and Lin [27]. Clearly, we know that 031 ZZ . But, 

42ZZ can be positive, zero or negative since the term 4Z  can be positive, zero or 

negative. If 4Z  takes positive values then the optimal solution for n is given by 

Equation (10) or (11). On the other hand, When 4Z  takes zero or negative values, 

evidently nf achieves its global minimum value at n=1.    

    

Now, if Q is limited to be a discrete variable then Equation (1) reaches its minimum 

when 
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A lower bound for the total lung-run average costs can be developed easily just 

considering both variables as continuous and it is as follows 

 43210 2 ZZZZZLB                                                                                   (15) 

Considering Equations (1), (7), (8), (10), (11), (13) and (14) we propose two 

algorithms for solving the two cases previously mentioned. 

 

Case 1. The replenishment lot size (Q) continuous and the number of shipments 

(n) discrete. 

Algorithm for the Case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2. The replenishment lot size (Q) discrete and the number of shipments (n) 

discrete. 

Algorithm for Case 2 

 

 

 

 

 
 

 

 

 

 

We solve the numerical example given in Chiu et al. [1] and Chen and Chiu [2] 

applying the algorithms for Case 1 and Case 2. We refer to the readers to both papers to 

see the data for the numerical example. The results are presented in Table 1. 

  

Table 1. Results for the numerical example. 

Step 1. Calculate 4Z ,  

If

 

04 Z  then set n=1 and calculate Q using Equation (7) and go to Step 4, else 

go to Step 2. 

Step 2. Calculate the integral value for n 

If 
31

4225.05.0
ZZ

ZZ
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is an integer value then n* = n and n* = n + 1. 

Otherwise, n* = n.  

Where n is calculated using Equation (10) or (11). 

Step 3. Given the discrete value of n  then calculate the continuous value for the lot size 
Q  using Equation (7).  

Step 4. Calculate the total cost using Equation (1) or Equation (8). 

If exist two solutions for n then there are two optimal solutions. For each 

solution of n do Steps 3 and 4 and report the two optimal solutions. 

Step 1. Calculate

 
4Z , 

If

 

04 Z  then set n=1 and calculate Q using Equation (13) or (14) and go to 

Step 4, else go to Step 2. 

Step 2. Compute the integral value for n 

If 
31

4225.05.0
ZZ

ZZ
 is an integer value then n* = n and n* = n + 1. 

Otherwise, n* = n.  

Where n is calculated using Equation (10) or (11). 

Step 3. Given the discrete value of n  then calculate the discrete value for the lot size 

Q  using Equations (13) or (14).  

Step 4. Calculate total cost using Equation (1). 

If exist two solutions for n then there are two solutions. For each solution of n 

do Steps 3 and 4 and select the solution with the minimal total cost. 
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Instance 

Q continuous and n 

discrete 

Algorithm for Case 1 

Q and n discrete 

Algorithm for Case 2 
Lower bound 

Instance 1 

from [1-2] 

Q=1672.647522 

n=2 

E[TCU ]= 487617.3019 

Q=1673 

n=2 

E[TCU ]= 487617.3045 

LB=487616.7365 

Special 

Case 

x=0 then 

E[x]=0 

Q=2275.596848 

n=3 

E[TCU ]= 439100.9032 

Q=2276 

n=3 

E[TCU ]= 439100.9047 

LB=439020.0644 

 

 

3. CONCLUDING REMARKS 

  

This paper develops two algorithms to determine jointly both the optimal 

replenishment lot size and the optimal number of shipments for the inventory model 

proposed by Chiu et al. [1] and Chen and Chiu [2]. The proposed algorithms are easy to 

apply and implement. It is important to remark that Chiu et al. [1] and Chen and Chiu 

[2] do not consider the situation when 04 Z . Also, they do not solve the inventory 

problem when both variables are considered as discrete variables. These are important 

characteristics that our paper dealt. Our paper simplifies, improves and complements 

Chiu et al. [1] and Chen and Chiu [2] research works. Interested readers in this topic 

also can see the research work of Cárdenas-Barrón et al. [28]. 
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