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Abstract — In this paper, a new approximate method has been presented to solve the
linear Fredholm integral equations system (FIEs). The technique is based on, first,
differentiating both sides of integral equations n times and then substituting the Taylor
series the unknown functions in the resulting equation and later, transforming to a
matrix equation. By merging these results, a new system which corresponds to a system
of linear algebraic equations is obtained. The solution of this system yields the Taylor
coefficients of the solution function. Also, this method gives the analytic solution when
the exact solutions are polynomials. So as to Show this capability and robustness, some
systems of FIEs are solved by the presented method in order to obtain their approximate
solutions.
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1. INTRODUCTION

The solutions of integral equations have a major role in the fields of science and
engineering. A physical event can be modeled by the differential equation or an integro-
differential equation or a system of these. Since few of these equations can be solved
explicitly, it is often necessary to resort to numerical techniques which are appropriate
combinations of numerical integration and interpolation [1,2]. Furthermore, there are
also expansion methods for integral equations such as El-gendi’s, Wolfe’s and Galerkin
methods [3]. Conversely, the solution of integral equations system which occur in
physics [4], biology [5] and engineering [6,7] is based on numerical integration methods
such as Euler- Chebyshev [8] and Runge-Kutta [9] methods, and also in a recent
research, the first-order linear Fredholm integral equations system is solved by using
rationalized Haar functions method [10] and by Galerkin methods with hybrid functions
[11].

Besides, a Taylor method for solving Fredholm integral equations has been
presented by Kanwal and Liu [12] and then this method has been extended by Sezer to
Volterra integral equations [13] and to differential equations [14]. Similar approach has
been used to solve linear Volterra-Fredholm integro-differential equations has been
applied by Yalginbas and Sezer [15], nonlinear Volterra-Fredholm integral equations by
Yalginbas [16], high-order linear differential equation system by [17,18] and linear
Volterra integral equation systems [19]. Thus, the presented method which is an
expansion method has been proposed to obtain approximate solution and also analytical
solution of systems of higher-order linear integral equations.
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In this paper, the basic ideas of the above studies are developed and applied to the
systems of s linear Fredholm type integral equations of the second kind (FIE) in the
general form

Zamj(x)y (x)=f_ (x)+ZIKmJ(x Hy;(t)dt , m=12..s,a<xt<b (la)

_la

where a_ (x)(m, j = .8), f.(X), K;;(x,t) are functions having nth derivatives on

aninterval a<x,t< b : and a, b are appropriate constants; and the solutions is expresed
in the form

yfn"’() ~
Y, (X) = Z (x-¢)", m=12,...,s , a<xc<b 2)

which is a Taylor polynomial of degree N at x=c, where y’(c), n=04,...,N are
the coefficients to be determined.

2. FUNDAMENTAL RELATIONS AND SOLUTION METHOD

Let us first consider the systems of s linear integral equations of Fredholm type
(FIEs) that is given by (1a) in the form of

E,.)=1f (X)+F,(x) or E,(X)=1,(x), m=12,..,s (1b)
where

X)=Zi:amj(X)y,-(X) , m=12,..,s

s b
Ly o ()42 [ Koy (X, t)y . m=12..5s.

_la

Here the expression E_ (x) and I (x), respectively, are called as the first part and

second part (or integral part) of the Eq. (1b). To obtain the solution of the given problem
in the form of expression (2) we first differentiate Eq. (1a) n times with respect to x to
obtain

EVX)=f"(x)+F"(x) or EM(x)=1"M(x) , m=12,..,s (3)
and then analyse the expressions E, (x) and I, (x) as follows:

2.1. Matrix Representation for the First Part
The expression Er(n")(x) can be more clearly written as

s (0
)X):|:Zamj(x)yj(x):| , m=12..s :; n=012,..N. (4)

Using the Leibnitz’s rule which is dealing with differentation of product of functions
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n (N n—i i
[P().y(x)]"” =Z(JP‘ '©)y?(c)
= i=0
and simplifying x =c into the resulting relation (4), we have
. (n)
St -S3((heno. o
i=t wee 1=l
m=212,..s ; n=012..,N
where the N +1 unknown coefficients y o), y(c), YV(c) ; (j=12,..,5) are

Taylor coefficients to be determined and a!’ (c) (m j=12,..,s), respectively, denote

the value of the ith derivative of the function a)(x) at x=c.
We now write the matrix form of expression (5) as

E=W.Y (6)
where
[y oy ey 0y Ly ]t
:[Yl Y, - YS]T
and
W, W, W,
wo W W W
W, W, W,,
the elements of which are defined by
[Washy sy - Wiy Wido Wil -+ (Wag
| Mko Wy | | Miks Wy W,
W)y Wag)y o () Wil Mgl - Wig)yg
(Warho War)yy - War)y, Was)oo (Wag)oy - (W)
W,, = (WZ:l)lo (W2:1)11 (W2:1)ls ......... W, - W2s)10 W2s)11 (WZ:S)IS
e Wy o (0, Wy W) - (W), )
Wer)o sy - W)y Wesho Wesdoy - We)os
S LV P YA W YA | Wke )y,
Wer)o W)y - W)y Wesko Weo)y - Weo)ss
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The values W, ), , (,m=12,...,s; i, j=012,...,N) are defined by

(Iljal(llj ‘ =£ijjafi2_”(c)' s (W), =(i-jal(l_j)(c)

(%y, , @@%wam_@m%> o

() ) }@@%w;wm{%w@

Notice in the relation (8) clearly that a{(c)=0 for 1<0 and i, j=012,..s, and for
j<0 and j>i, (I_]:O, where i, j and | are integers. In this case, in Eq. (8), for
J

n=012,...N-1;m=n+1n+2,...,N leads to
(an )ij =0.
Hence, the matrix W becomes, clearly,

_( 11)00 (W11)01 ) (Wll)OS (Wls )oo (Wls )01 (Wls )05 |
(Wl 1 )1 0 (Wl.l )1 1 . (Wl.l )15 h (Wls )10 (Wls )1 1 (Wls )15
W B o W), o 0), W), - O,),
w=| S S ©)
(Wsl )oo (Wsl )01 o (Wsl )05 o (Wss )oo (Wss )01 (Wss )Os
(Ws.l )10 (Ws.l )11 a (Ws.l )15 . (Wss )10 (Ws.s )1 1 a (Ws.s )15
Wy 0, o W), o W), (L), W), ]

2.2. Matrix Representation for the Integral Part

The expression 1\"(x) can be more clearly written as

17(x)= 17 (x)+F"(x) (10)
or
s 2 oK,
1M (x ZI y,(t}dt . m=12..s.
~J

First, we put x =c in relation (10), thereby in expression (11), become
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s 8 0"K,,
10(c)= ")+ j y,(tt , m=12..5s. (11)

=1 X=C

Thereby in expression (11) and then substitute the Taylor expansion of
v, (€),y, ()., y,(t) at t=c, i.e.

y,(t)= ikly, cXt-c) , i=12..5 (12)

k=0
in the resulting relation. Thus, expression (10) become

Il(n)(c)=fl(n)(c)+zllTnkyl(k)(C) leTnkyZ +. +leTnkys
k=0 k=0

o0 0

Ién)(c): fz(n)(c)+ 21Tnky1(k)(c)+ 22Tnkyz + +Z 2sTnkys (13)

k=0 k=

o

Ign)(c): fs(n)(c)+25 nkyl +ZS nkyz + +zssTnkys
k=0
where
C 180K (xt)
kI ox" .

The relation (13) gives us infinite Ilnear equations. If we take n=k=0,.12,,...,N then
relation (13) reduces to a system of (N +1)xs linear equations for the (N +1)xs

T (t—c)dt.

unknown coefficients y,”(c),y,”(c),---,y,"(c), i=12,.,s. This system can be
put in a matrix form as

I=F+TY (14)
where the matrices Y, F and T are defined by
Yl
Y
T
Y=[y® By 0yl g0y ] T
Y

Tl 1 Tl 2 Tl S
po| T T T,
Tsl TsZ Tss

The matrices T, , (n,k =12,...,s) are defined by
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1% 1% 1% 12 12 12 1s 1s 1s
Too  “To1 Ton Too ~“To1 Ton Too “To1 Ton
1 11 1% 12 12 12 1s 1s 1s
T, =| MO Ti1 TIN T, = Tio T TIN T, Tio T LY
. ) . ) » s .
11 1% 11 12 12 12 1s 1s 1s
Tno  Tht TNN Tno “Tha TNN Tno “The TN
M 21 2 21 22 22 22 2s 2s 2s
Too 2o Ton Too  ““Toz Ton Too  “Toz Ton
2 21 21 2 22 22 2s 2s 2s
Ty =| 1o T Tin Ty, = Tio "M TN Ty, - Tio T Tin
, . ;o Tag .
21 2 21 22 22 22 2 2s 2s
Tvo 2T TN Tno “Tha TN Tno T TN
sl- sl- sl- S2- S2- S2- S S
Too “To1 Ton Too To Ton Too  Tox *Ton
sl- sl- sl- 52 s2 S2-
Tio T TIN To N Tin
Tsl . ' Tsz . ’ ,ng =

2.3. Fundamental Matrix Equatios

Substituting the matrix forms (6) and (14) in expression of Eq. (3) at the point x=c,
we get the matrix form of Eq. (3) as
WY =F+TY (15)
or
(W-T)Y=F,
which is a fundemental equation for the ingeral equations system (1a) . If we take
M =W -T, then we have

MY =F (16)

where

(Wn)oo_“Too (W11)01_11T01 (Wll)OS _llTOS (Wls )oo_lsToo (Wls )01_1ST01 o (Wls )05 _1ST05

(W11)1o_11T10 (W11)11_MT11 T (Wll)ls _llTls (Wls )10_18T10 (Wls )11_1ST11 o (Wls )15 _1s-|—1$

(Wll)s[) _HTso (Wll)sl _TlTsl (Wll)ss _MTss . (Wls )s() _lSTso (Wls )51 _?STSI o (Wls )ss_lSTss
M= : : :

(Wsl )00 51TOO (Wsl )01_51T01 o (Wsl )os _SlTOS (Wss )00 ssTOO (Wss )01_55T01 e (Wss )Os _SSTOS

(Wsl )10 51TlO (Wsl )11_81-'—11 o (Wsl )15 _SlTls . (Wss )10 SSTlO (Wss )11_SST11 e (Wss )15 _SSTls

(Wsl )50 _SITSO (Wsl )51 _SlTsl o (Ws1 )ss _81Tss (Wss )50 _SSTSO (Wss )51 _ssTsl e (Wss )ss _SSTss ]

where Y and F are defined in Eq. (14).
If [M|=0, then we can write
Y=M'F. (17)
Thus, the coefficients y”(c), (m=12,...,5; n=0,1,2,...,N), are uniquely determined by
Eqg. (17). Also, by means of system (16) we may obtain some particular solutions. This
solutions is given by the Taylor polynomial

N (M)
ym(x)zzymT!(C)(x—c)”, m=12,...,s. (18)
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3. ACCURACY OF SOLUTION

We can easily check the accuracy of the solution obtained in the fom (18) as follws.
Since the truncated Taylor series (18) or the corresponding polynomial expansion is an
approximate solution of Egs. (1a) and (1b), when the solution y_(x) are substituted

Egs. (1a) and (1b), resulting equation must be satisfied approximately; that is, for
x=x ela,b], r=012,....

D(Xr) = |Em (Xr) - fm(xr )_ Fm(xr)| =0
or
) <107 (k, is any positiveinteger).

If max(lO‘k'i )le‘k ( k is any positiveinteger) is prescribed, then the truncation limit
N is increased until the difference |D(x,)| at each of the points x, becomes smaller

than the prescribed107*.

On the other hand, the error function can be estimated by

K= 3 (Y, 09— £~ [ Ky, (6D, Oct

If DN(X)—>O when N is sufficiently large enough as N — oo, then the error
asymptotically vanishes.

4. NUMERICAL ILLUSTRATIONS

In this section we consider two examples of systems of Fredholm type to illustrate
the use of presented method.

Example 1. Let us first consider the system of Fredholm with two unknown
1 1
y, (x)—2xy,(x)=22x+ 3+ 3I(X +t)y, (t)dt + 3j(x —t)y, (t)dt
-1 -1
. . (19)
5y, (x)+y,(x)=—x+9+ 3jx2y1(t)dt + SI(xt —t? )y, (t)t
-1 -1

and approximate the solution vy (x) by the Taylor polynomial

z% O . (m=12)

n=0

where a=-1,b=1,c=0,N =3.
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Using the matrices W and T, we find the matrix M in (16). We find the unknown
coefficients y, ™ (0) are uniquely determined as
Y=[1 0 40 -410 0.
By substituting the obtained coefficients in (18) the solution of (19) becomes

(- 4)x°

- O OK @ ©OF 4 0
o il 2!

Y, \X)=
o il 21 3
which are the exact solutions.

Y2 (X) =

Example 2. Consider the system of Fredholm integral equations:

yi(x)—e 7y, (x)=e* = [er ™y, (t)dt
’ (20)

()= + [y, (0t - [y, )

Following the previous procedures, we find the unknown coefficients ym(") (O) as
Y =[1.0068 0.99322 1.0068 0.99322 1.0068 0.99322 1.0068 2 4 8 16 32|

We get the aproximate solution of problem (20) for c=0,N =5 as

y.(x)= (1.0068) 0 (0-99322))(1 .\ (1.0068)X2 .\ (0.99322))(3 .\ (1.0068)X4 .\ (0.99322)X5
o il 2! 3 41 5!
yz(x):—(1'0068)x0 +@x1 +@x2 +@x3 +@x4 +
0] il 2! 3 41 oS!
Now let us find the solution of problem (20) taking ¢=0; N=7,9,11. The
comparison of the solutions given above with exact solutions y,(x) =e*, y,(x) =e*

of the problem is given below in Tables 1-4.

(32) x°.

Table 1. Comparing the solutions of y, which has been found for N =5,7,9,11 at Example 2.

Present Method
Exact Solution| N=5,¢c=0 | N=7,¢c=0| N=9,c=0| N=11,c=0

i yi(x;) =e” y1(Xi) y1(x;) y1(Xi) y1(Xi)
0|1 1.0068 1 1 1
0.1]1.105170918 |1.111325814 |1.105170918 |1.105170918 |1.105170918
0.2]1.221402758 |1.226974062 |1.221402758 |1.221402758 |1.221402758
0.3]1.349858808 |1.354901398 |1.349858806 |1.349858808 |1.349858808
0.4]1.491824698 |1.496385021 |1.491824681 |1.491824698 |1.491824698
0.5]1.648721271 |1.652832609 |1.648721169 |1.64872127 |1.648721271
0.6]1.8221188 1.825792247 |1.822118355 |1.822118799 |1.8221188
0.7 2.013752707 |2.016962359 |2.013751160 |2.013752699 |2.013752707
0.8]2.225540928 |2.228201646 |2.225536368 |2.225540897 |2.225540928
0.9]2.459603111 |2.461539012 |2.459591265 |2.459603007 |2.459603111
1 |2.718281828 |2.719183500 |2.718253972 |2.718281526 |2.718281826
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Table 2. Comparing the solutions of y,which has been found for N =5,7,9,11 at Example 2.

Present Method

X

Exact Solution
Yo (%) = e

N=5,c=0
Y2 (%)

N=7,c=0
Y2 (%)

N=9,c=0
Yo (%)

N=11,c=0
Y2 (Xi)

0

1

1.0068

1.00000001

1

1

0.1

1.221402758

1.228202667

1.221402768

1.221402758

1.221402758

0.2

1.491824698

1.498618667

1.491824691

1.491824698

1.491824698

0.3

1. 8221188

1.828848

1.822118364

1.822118799

1.8221188

0.4

2.225540928

2.231930667

2.225536376

2.225540897

2.225540928

05

2.718281828

2.723466667

2.718253978

2.718281526

2.718281826

0.6

3.320116923

3.321936

3.319994159

3.320115010

3.320116902

0.7

4.055199967

4.049018667

4.054767904

4.055190849

4.055199834

0.8

4.953032424

4.929914667

4.951742466

4.952997048

4.953031755

0.9

6.049647464

5.993664

6.046250433

6.049530173

6.049644666

1

7.389056099

7.273466667

7.380952391

7.388712522

7.389046016

Table 3. Comparison of the error analysis of y, which has been found for N =5,7,9,11 at

Example 2.
N=5,c=0 N=7,c=0 N=9,c=0 N=11,c=0

X.

' D, (X;) D, (X) D, (x;) D, (X;)

0 6.80000E-03 0.00000E+00 0.00000E+00 0.00000E+00
0.1 6.15490E-03 0.00000E+00 0.00000E+00 0.00000E+00
0.2 5.57130E-03 0.00000E+00 0.00000E+00 0.00000E+00
0.3 5.04259E-03 2.00000E-09 0.00000E+00 0.00000E+00
0.4 4.56032E-03 1.70000E-08 0.00000E+00 0.00000E+00
0.5 4,11134E-03 1.02000E-07 1.00000E-09 0.00000E+00
0.6 3.67345E-03 4.45000E-07 1.00000E-09 0.00000E+00
0.7 3.20965E-03 1.54700E-06 8.00000E-09 0.00000E+00
0.8 2.66072E-03 4.56000E-06 3.10000E-08 0.00000E+00
0.9 1.93590E-03 1.18460E-05 1.04000E-07 0.00000E+00

1 9.01672E-04 2.78560E-05 3.02000E-07 2.00000E-09

Table 4. Comparison of the error analysis of y, which has been found for N =5,7,9,11 at

Example 2.
N=5,c=0 N=7,c=0 N=9,c=0 N=11,c=0
Xi D, (%) D, (%) D, (%) D, (%)
0 |6.80000E-03 1.00000E-08 0.00000E+00 0.00000E+00
0.1 |6.79991E-03 1.00000E-08 0.00000E+00 0.00000E+00
0.2 | 6.79397E-03 7.00000E-09 0.00000E+00 0.00000E+00
0.3 |6.72920E-03 4.36000E-07 1.00000E-09 0.00000E+00
0.4 | 6.38974E-03 4,55200E-06 3.10000E-08 0.00000E+00
0.5 | 5.18484E-03 2.78500E-05 3.02000E-07 2.00000E-09
0.6 | 1.81908E-03 1.22764E-04 1.91300E-06 2.10000E-08
0.7 | 6.18130E-03 4,32063E-04 9.11800E-06 1.33000E-07
0.8 |2.31178E-02 1.28996E-03 3.53760E-05 6.69000E-07
0.9 | 5.59835E-02 3.39703E-03 1.17291E-04 2.79800E-06
1 |1.15589E-01 8.10371E-03 3.43577E-04 1.00830E-05

27
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5. CONCLUSIONS

Linear Fredholm integral equations system with variable coefficients are usually
difficult to solve analytically. In many cases, it is required to obtain the approximate
solutions. For this purpose, the presented method can be proposed. A considerable
advantage of the method is that it allows us to make use of the computer because this
Taylor method transforms the problem to matrix equation, which is a linear algebraic
system. Therefore, Taylor coefficients of the solution are found very easily by using the
computer programs. Furthermore, after calculation of the series coefficients, the
solutions y(x) can be easily evaluated for arbitrary values of x at low computation

effort.

If the functions a ; (x)(m, j=12,...,;s), f (x), K, (xt) are functions having nth
derivatives on an interval a<x,t<b, then we can approach the solutions vy, (x) by the
Taylor polynomial

N ()
ym(x):zy’“—l(c)(x—c)“, m=12,..s , a<xc<b
n=0 n:

about x =c; otherwise, the method can not be used. On the other hand, it is observed
that this method shows the best advantage when the known functions in equation can be
expanded to Taylor series about x =c with converge rapidly.

An interesting feature of this method is that when linear Fredholm integral equations
system have linearly independent polynomial solution of degree N or less than N, the
method can be used for finding the analytical solution. Besides, it is seen that when the
truncation limit N is increased, there exists a solution, which is closer to the exact
solution.

The method can be developed and applied to another high-order linear and nonlinear
integro-differential equation systems with variable coefficients.
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