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Abstract – In this paper, a new approximate method has been  presented to solve the 

linear Fredholm integral equations system (FIEs). The technique is based on, first, 

differentiating both sides of integral equations n times and then substituting the Taylor 

series the unknown functions in the resulting equation and later, transforming to a 

matrix equation. By merging these results, a new system which corresponds to a system 

of linear algebraic equations is obtained. The solution of this system yields the Taylor 

coefficients of the solution function. Also, this method gives the analytic solution when 

the exact solutions are polynomials. So as to Show this capability and robustness, some 

systems of FIEs are solved by the presented method in order to obtain their approximate 

solutions. 

Key Words - Taylor polynomials and series, System of  integral equations, Fredholm 

systems.  

1. INTRODUCTION 

 

     The solutions of integral equations have a major role in the fields of science and 

engineering. A physical event can be modeled by the differential equation or an integro- 

differential equation or a system of these. Since few of these equations can be solved 

explicitly, it is often necessary to resort to numerical techniques which are appropriate 

combinations of numerical integration and interpolation [1,2]. Furthermore, there are 

also expansion methods for integral equations such as El-gendi’s, Wolfe’s and Galerkin 

methods [3]. Conversely, the solution of integral equations system which occur in 

physics [4], biology [5] and engineering [6,7] is based on numerical integration methods 

such as Euler- Chebyshev [8] and Runge-Kutta [9] methods, and also in a recent 

research, the first-order linear Fredholm integral equations system is solved by using 

rationalized Haar functions method [10] and by Galerkin methods with hybrid functions 

[11]. 

      Besides, a Taylor method for solving Fredholm integral equations has been 

presented by Kanwal and Liu [12] and then this method has been extended by Sezer to 

Volterra integral equations [13] and to differential equations [14]. Similar approach has 

been used to solve linear Volterra-Fredholm integro-differential equations has been 

applied by Yalçınbaş and Sezer [15], nonlinear Volterra-Fredholm integral equations by 

Yalçınbaş [16], high-order linear differential equation system by [17,18] and linear 

Volterra integral equation systems [19]. Thus, the presented method which is an 

expansion method has been proposed to obtain approximate solution and also analytical 

solution of systems of higher-order linear integral equations. 
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     In this paper, the basic ideas of the above studies are developed and applied to the 

systems of  s  linear Fredholm type integral equations of the second kind (FIE) in the 

general form 
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where ),(),(),,,2,1,()( txKxfsjmxa mjmmj   are functions having nth derivatives on 

an interval btxa  , , and ba,  are appropriate constants; and the solutions is expresed 
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which is a Taylor polynomial of degree N  at cx  , where Nncy n

m ,,1,0),()(   are 

the coefficients to be determined. 

 

2. FUNDAMENTAL RELATIONS AND SOLUTION METHOD 

 

     Let us first consider the systems of  s  linear integral equations of Fredholm type 

(FIEs) that is given by (1a) in the form of 
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     Here the expression )(xEm  and )(xI m , respectively, are called as the first part and 

second part (or integral part) of the Eq. (1b). To obtain the solution of the given problem 

in the form of expression (2) we first differentiate Eq. (1a)  n times with respect to x  to 

obtain 
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and then analyse the expressions )(xEm  and )(xI m  as follows: 

 

2.1. Matrix Representation for the First Part 

 

     The expression   xE n

m  can be more clearly written as 
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Using the Leibnitz’s rule which is dealing with differentation of product of functions 
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where the 1N  unknown coefficients           sjcycycy N

jjj ,...,2,1;,...,, 10   are 

Taylor coefficients to be determined and   ca i

mj ;  sjm ,...,2,1,  , respectively, denote 

the value of the ith derivative of the function    xa i

mj  at cx  .  

     We now write the matrix form of expression (5) as 
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the elements of which are defined by 
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Notice in the relation (8) clearly that    0ca l
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2.2. Matrix Representation for the Integral Part 

 

     The expression   xI n
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First, we put cx   in relation (10), thereby in expression (11), become 
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Thereby in expression (11) and then substitute the Taylor expansion of 
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in the resulting relation. Thus, expression (10) become 
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The relation (13) gives us infinite linear equations. If we take  Nkn ,,,2,1,0   then 

relation (13) reduces to a system of  sN  )1(  linear equations for the sN  )1(  
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The matrices  skn ,...,2,1,, nkT  are defined by 
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2.3. Fundamental Matrix Equatios 

 

     Substituting the matrix forms (6) and (14) in expression of Eq. (3) at the point cx  , 

we get the matrix form of Eq. (3) as 

                                                     TYFWY                                                           (15) 

or 

        FYTW  , 

which is a fundemental equation for the ingeral equations system (1a) . If we take  

TWM  , then we have    

                                                                     FMY                                                                          (16) 

where 
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where Y  and  F  are defined in Eq. (14). 

     If  0M , then we can write 

                                                                   FMY
1 .                                                                       (17) 

Thus, the coefficients   ,cy n

m  Nnsm ,...,2,1,0;,...,2,1  , are uniquely determined by 

Eq. (17). Also, by means of system (16) we may obtain some particular solutions. This 

solutions is given by the Taylor polynomial 

                              .,,2,1,)(
!

)(
)(

0

)(

smcx
n

cy
xy

N

n

n
n

m
m 



                                   (18) 
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3. ACCURACY OF SOLUTION 

 

     We can easily check the accuracy of the solution obtained in the fom (18) as follws. 

Since the truncated Taylor series (18) or the corresponding polynomial expansion is an 

approximate solution of Eqs. (1a) and (1b), when the solution )(xym  are substituted 

Eqs. (1a) and (1b), resulting equation must be satisfied approximately; that is, for 

  ,2,1,0,,  rbaxx r .  

 

0)()()()(  rmrmrmr xFxfxExD  

or   

  )(10 integer positiveany  isr

k

r kxD r
 . 

 

If    )integer positiveany  is(1010max kkk
ir 
  is prescribed, then the truncation limit 

N  is increased until the difference  rxD  at each of the points rx  becomes smaller 

than the prescribed k10 . 

 

     On the other hand, the error function can be estimated by 

 

   


b

a

jmjm

s

j

jmjN dttytxKxfxyxaxD )(),()()()(
1

 

     If   0xDN  when N  is sufficiently large enough as N , then the error 

asymptotically vanishes. 

 

4. NUMERICAL ILLUSTRATIONS 

 

     In this section we consider two examples of systems of Fredholm type to illustrate 

the use of presented method. 

 

Example 1. Let us first consider the system of Fredholm with two unknown 
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                        (19) 

and approximate the solution  xym  by the Taylor polynomial 

       2,1,0
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where 3,0,1,1  Ncba . 
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     Using the matrices W  and T , we find the matrix M  in (16). We find the unknown 

coefficients  0
)(n

my  are uniquely determined as 

 T00140401 Y . 

By substituting the obtained coefficients in (18) the solution of (19) becomes 
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which are the exact solutions. 

 

Example 2. Consider the system of Fredholm integral equations: 
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                              (20) 

Following the previous procedures, we find the unknown coefficients  0
)(n

my  as 

 T32168420068.199322.00068.199322.00068.199322.00068.1Y

. 

We get the aproximate solution of problem (20) for 5,0  Nc  as 
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     Now let us find the solution of problem (20) taking 0c ; 11,9,7N . The 

comparison of the solutions given above with exact solutions xx exyexy 2

21 )(,)(   

of the problem is given below in Tables 1-4. 

 
Table 1. Comparing the solutions of 1y  which has been found for 11,9,7,5N  at Example 2. 

 
    Present Method  

ix  
Exact Solution 

x
i exy )(1  

0,5  cN  

)(1 ixy  

0,7  cN  

)(1 ixy  

0,9  cN  

)(1 ixy  

0,11  cN  

)(1 ixy  

0 1 1.0068 1 1 1 

0.1 1.105170918 1.111325814 1.105170918 1.105170918 1.105170918 

0.2 1.221402758 1.226974062 1.221402758 1.221402758 1.221402758 

0.3 1.349858808 1.354901398 1.349858806 1.349858808 1.349858808 

0.4 1.491824698 1.496385021 1.491824681 1.491824698 1.491824698 

0.5 1.648721271 1.652832609 1.648721169 1.64872127 1.648721271 

0.6 1.8221188 1.825792247 1.822118355 1.822118799 1.8221188 

0.7 2.013752707 2.016962359 2.013751160 2.013752699 2.013752707 

0.8 2.225540928 2.228201646 2.225536368 2.225540897 2.225540928 

0.9 2.459603111 2.461539012 2.459591265 2.459603007 2.459603111 

1 2.718281828 2.719183500 2.718253972 2.718281526 2.718281826 
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  Table 2. Comparing the solutions of 2y which has been found for 11,9,7,5N  at Example 2. 

 
  Present Method 

ix  
Exact Solution 

x
i exy 2

2 )(   

0,5  cN  

)(2 ixy  

0,7  cN  

)(2 ixy  

0,9  cN  

)(2 ixy  

0,11  cN  

)(2 ixy  

0 1 1.0068 1.00000001 1 1 

0.1 1.221402758 1.228202667 1.221402768 1.221402758 1.221402758 

0.2 1.491824698 1.498618667 1.491824691 1.491824698 1.491824698 

0.3 1. 8221188 1.828848 1.822118364 1.822118799 1.8221188 

0.4 2.225540928 2.231930667 2.225536376 2.225540897 2.225540928 

0.5 2.718281828 2.723466667 2.718253978 2.718281526 2.718281826 

0.6 3.320116923 3.321936 3.319994159 3.320115010 3.320116902 

0.7 4.055199967 4.049018667 4.054767904 4.055190849 4.055199834 

0.8 4.953032424 4.929914667 4.951742466 4.952997048 4.953031755 

0.9 6.049647464 5.993664 6.046250433 6.049530173 6.049644666 

1 7.389056099 7.273466667 7.380952391 7.388712522 7.389046016 

 

Table 3. Comparison of the error analysis of 1y  which has been found for 11,9,7,5N  at 

Example 2. 
 

ix  
0,5  cN  

)(1 ixD  

0,7  cN  

)(1 ixD  

0,9  cN  

)(1 ixD  

0,11  cN  

)(1 ixD  

0 6.80000E-03 0.00000E+00 0.00000E+00 0.00000E+00 

0.1 6.15490E-03 0.00000E+00 0.00000E+00 0.00000E+00 

0.2 5.57130E-03 0.00000E+00 0.00000E+00 0.00000E+00 

0.3 5.04259E-03 2.00000E-09 0.00000E+00 0.00000E+00 

0.4 4.56032E-03 1.70000E-08 0.00000E+00 0.00000E+00 

0.5 4.11134E-03 1.02000E-07 1.00000E-09 0.00000E+00 

0.6 3.67345E-03 4.45000E-07 1.00000E-09 0.00000E+00 

0.7 3.20965E-03 1.54700E-06 8.00000E-09 0.00000E+00 

0.8 2.66072E-03 4.56000E-06 3.10000E-08 0.00000E+00 

0.9 1.93590E-03 1.18460E-05 1.04000E-07 0.00000E+00 

1 9.01672E-04 2.78560E-05 3.02000E-07 2.00000E-09 

 

Table 4. Comparison of the error analysis of 2y  which has been found for 11,9,7,5N  at 

Example 2. 

   

ix  

0,5  cN  

)(2 ixD  

0,7  cN  

)(2 ixD  

0,9  cN  

)(2 ixD  

0,11  cN  

)(2 ixD  

0 6.80000E-03 1.00000E-08 0.00000E+00 0.00000E+00 

0.1 6.79991E-03 1.00000E-08 0.00000E+00 0.00000E+00 

0.2 6.79397E-03 7.00000E-09 0.00000E+00 0.00000E+00 

0.3 6.72920E-03 4.36000E-07 1.00000E-09 0.00000E+00 

0.4 6.38974E-03 4.55200E-06 3.10000E-08 0.00000E+00 

0.5 5.18484E-03 2.78500E-05 3.02000E-07 2.00000E-09 

0.6 1.81908E-03 1.22764E-04 1.91300E-06 2.10000E-08 

0.7 6.18130E-03 4.32063E-04 9.11800E-06 1.33000E-07 

0.8 2.31178E-02 1.28996E-03 3.53760E-05 6.69000E-07 

0.9 5.59835E-02 3.39703E-03 1.17291E-04 2.79800E-06 

1 1.15589E-01 8.10371E-03 3.43577E-04 1.00830E-05 
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5. CONCLUSIONS 

     Linear Fredholm integral equations system with variable coefficients are usually 

difficult to solve analytically. In many cases, it is required to obtain the approximate 

solutions. For this purpose, the presented method can be proposed. A considerable 

advantage of the method is that it allows us to make use of the computer because this 

Taylor method transforms the problem to matrix equation, which is a linear algebraic 

system. Therefore, Taylor coefficients of the solution are found very easily by using the 

computer programs.  Furthermore, after calculation of the series coefficients, the 

solutions )(xy  can be easily evaluated for arbitrary values of  x  at low computation 

effort. 

     If the functions ),(),(),,,2,1,()( txKxfsjmxa mjmmj   are functions having nth 

derivatives on an interval btxa  , , then we can approach the solutions )(xym  by the 

Taylor polynomial  

bcxasmcx
n

cy
xy

N

n

n
n

m
m 



,,,,2,1,)(
!

)(
)(

0

)(

  

about cx  ; otherwise, the method can not be used. On the other hand, it is observed 

that this method shows the best advantage when the known functions in equation can be 

expanded to Taylor series about cx   with converge rapidly.  

     An interesting feature of this method is that when linear Fredholm integral equations 

system have linearly independent polynomial solution of degree N  or less than N , the 

method can be used for finding the analytical solution. Besides, it is seen that when the 

truncation limit N  is increased, there exists a solution, which is closer to the exact 

solution. 

     The method can be developed and applied to another high-order linear and nonlinear 

integro-differential equation systems with variable coefficients. 
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