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Abstract- Data Envelopment Analysis (DEA) provides a method to evaluate the relative 

efficiency of peer Decision Making Units (DMUs) that have multiple inputs and 

outputs. Production process in two-stage DEA is performed in the two consecutive 

phases and DMUs have intermediate measures, in addition to their inputs and outputs. A 

unique feature of the intermediate measures is that the outputs in the first stage are 

being treated as inputs in the second stage. The aim of this paper is to determine the 

returns to scale (RTS) classification and scale elasticity (SE) in two-stage DEA.   

Therefore an approach is introduced for estimating the RTS situation of DMUs with 

two-stage structure based on the consideration of SE quantity in each of the individual 

stages. The utilization of the proposed approach is demonstrated with a real data set.   
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1. INTRODUCTION 

 

          Data envelopment analysis is a scientific method for the performance analysis of 

peer decision making units, in the presence of multiple inputs and outputs. In the recent 

years, a number of DEA studies have focused on measuring the relative efficiency of 

DMUs with a two-stage structure (e.g. see [1-6]). In the two-stage DEA, DMUs have a 

two-stage structure and intermediate measures exist between two consecutive stages. 

Namely, the first stage uses the inputs to generate intermediate measures and later on 

the second stage uses them to produce outputs. Consequently, the intermediate measures 

which were determined by the first stage are all of the second stage inputs. 

           Meanwhile returns to scale and scale elasticity are two important topics in the 

production theory and since the beginning of DEA research, RTS has been widely 

discussed as an important economic implication of DEA efficiencies. These two 

concepts can determine the optimal size of efficient DMUs under variable returns to 

scale technology. Most of the previous attempts to deal with the two-stage DEA have 

only addressed measuring the performance of such two-stage processes. Therefore, this 

research attempts to measure RTS in the analytical framework of two-stage DEA. To 

achieve this goal, the production space in two-stage DEA under variable returns to scale 

(VRS) technology is investigated and a method for measuring RTS quality in this field, 

regarding the SE quantity and RTS classification in each of the individual stages, is 

proposed.  

           The structure of this research unfolds as follows: In section 2, the two-stage DEA 

under variable returns to scale (VRS) technology is introduced and also the cost 



 

 

M. Khaleghi, G.  Jahanshahloo, M.  Zohrehbandian and F. H. Lotfi 
 

 

194 

minimization model is applied for evaluating each DMU with two-stage structure. The 

proposed method for estimating RTS and SE in two-stage DEA is discussed in section 

3. Section 4 includes an application of the proposed method to 26 branches of an Iranian 

commercial bank. Finally, the concluding remarks are provided in section 5.  

 

2. TWO-STAGE DEA UNDER VARIABLE RETURNS TO SCALE  
 

           It  is  assumed  that  there  are  n  DMUs  which  their  production   activities   are 

performed   in  two  phases. In the first stage, each   njDMU j ,...,1   uses  m  inputs, 

),...,1( mixij  ,  in order to produce D outputs, ),...,1( Ddzdj  .These D outputs are  used 

as inputs to the second phase and are called intermediate   measures. These intermediate 

measures produce s outputs, ),...,1( sryrj  , in  the  second  stage. Therefore,
 jDMU   is 

characterized by the two consecutive production stages, the first stage from 
mRx to DRz  and the second one from DRz  to sRy .Figure 1 visually describes 

this production process for
jDMU  . The Production Possibility Set (PPS) under variable 

returns to scale (VRS) technology for each stage can be defined by the following DEA 

formulations: 

 

      
  00zxezxzx  1111 ,,,1,,,1  ZXRRPPS Dm  

       00yzeyzyz  2222 ,,,1,,,2  YZRRPPS sD  

          

          Where n mRX , n DRZ  and n sRY  are the given data set related to inputs, 

intermediate measures and outputs, respectively. Semi-positive vectors of weights, 

 tn

11

2

1

1

1 ,...,,    
and  tn

22

2

2

1

2 ,...,,   are used to connect inputs and intermediate 

measures of n DMUs in stage 1 and intermediate measures and outputs of n DMUs in 

stage 2, respectively. e is a row vector with all elements equal to 1. 0  is a zero vector, 

whose dimension depends upon its corresponding vector comparison.  

 

 

 

 
                            

Figure 1- The production process of
jDMU  in two-stage DEA. 

          Now the cost minimization model [7, 8] is suggested for minimizing a total 

production cost of 
oDMU  over two stages. 

oDMU   no ,...,1  is the DMU under 

assessment. 
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Where mRw and DRv are two column vectors of inputs cost in stage 1 and 

intermediate measures cost in stage 2, respectively. Based on an optimal solution 

 ** 21** ,,, zx  of this model, the cost efficiency can be defined by  

 

o

t
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t

tt
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It is trivial that
o

t

o

ttt
zvxwzvxw  **0  therefore 10  CE  and 

oDMU  will be cost 

efficient if 1cE . If 1cE , then  oyzx ,, **  will be considered as the cost efficient 

projection of
oDMU . For introducing a common *

z  between stage 1 and stage 2, the 

values of slack variables have been ignored in the cost efficient projection. The dual 

model of (1) is expressed by 
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Here  m ,...,1  and  D ,...,1  are two row vectors of dual variables related to 

the first and second sets of constraints in model (1). Similarly,  D ,...,1  and 

 s ,...,1  are those related to the third and fourth sets of constraints in model (1). 

Finally, the dual variables,
 1 and 2 , are due to the fifth and sixth constraints of model 

(1), respectively. If  ** 21** ,,, zx  is an optimal solution of model (1) and 

 *
2

*
1

**** ,,,,,   is an optimal solution of model (2), then the following lemmas 

hold.  
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          Lemma1. For each feasible solution  21,,, zx  of (1), we have:  

 

      

    00 *

2

***

1

**   oiii yzzx  

Furthermore, 0*

1

**   zx  is the supporting hyper-plane on PPS1 at point  ** ,zx  

and 0*

2

**   yz  is the supporting hyper-plane on PPS2 at point  oyz ,* . 

            

           Proof. Suppose  21,,, zx  is a feasible solution of model (1) therefore the 

following inequalities are conducted:  
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Considering the third sets of constraints in (2) and 01  , we have 

 

          501*

1
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1

11*1*   eZXeZX  

 

It follows from (3) and (5) that 0*

1

**   zx . 

Similarly, it is obtained from the fourth sets of constraints in (2), 02  and the relation 

(4) that 0*

2

**   oyz . 

 

Mathematically, the complementary slackness conditions can be specified as follows:  
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Now, it follows from (6), (7), (10) that  

 

     0ZX *

1

*****

1

*1*1**1*   zxe  

 

Also, from (8), (9) and (11) follows that  
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           Lemma2. If 0X  and  0Z  then the following items are valid: 

 

      i 0x *

 and 0z *            ii w*  and v **   

        

           Proof. The proof is not difficult regarding the constraints of model (1) and the 

complementary slackness conditions. 

 

           Remark1. Note that  ** ,zx  and  oyz ,*  are the coordinates of the points on the 

efficiency frontier of stages 1 and 2, respectively, and we want to measure the RTS at 

 oyzx ,, **  in the two-stage DEA. 

 

            Remark2. The cost minimization model is a non-radial DEA model. Therefore a 

problem of multiple projections can be found and this issue is an effective factor on 

RTS measurement. Sueyoshi et al. [9] have investigated how to solve this difficulty. In 

this study, it is assumed that the projection is unique. 

       
           Remark3. Scale elasticity (SE) is an important topic in performance analysis 

related to (RTS). In fact, it represents the quantitative part of (RTS) which is the 

proportional change in outputs resulting from the equi-proportionate change in inputs. 

Considering the optimal solution of model (2), the scale elasticity of each stage is 

simply determined as follows [9, 10]:  
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         A problem associated with the RTS measurement is that sometimes a supporting 

hyper-plane of each stage could not be uniquely determined. In other words, it is 

necessary to consider an occurrence of multiple optimal solutions on *

1 and *

2  , in 

model (2). For dealing with this problem see [9]. In this paper it is assumed that model 

(2) has unique optimal solution. 

                  

3. MESUREMENT OF RTS AND SE IN TWO-STAGE DEA 

 

To introduce a new approach for RTS measurement in two-stage DEA, consider the 

following brief description on the relation among a supporting hyper-plane, RTS and SE 

in DEA [8, 9, 11].  
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The relation among SE1,
*

1 and the type of RTS in stage 1 at  ** ,zx  is as follows: 

 

 i  Increasing RTS (IRS)     0*

1
 
SE1

 
>1

        

      ii  Decreasing RTS (DRS)  0*

1  SE1
 
<1     

      iii Constant RTS (CRS)      0*

1  SE1
 
=1 

The similar relation exists among SE2,
*

2 and the type of RTS in stage 2 at
  oyz ,* . Now 

for determining the two-stage overall RTS at
  oyzx ,, **  based on the consideration of 

SE quantity in stages 1 and 2, 5 different cases must be perused.  

 

Case 1) If SE1
 
=1 and SE2

 
=1, then the two- stage overall RTS will be considered as 

CRS and OSE =1; ( OSE  denotes the overall SE of two–stage). 

 

Case 2) If SE1
 
=1 and SE2

 
<1, then the overall RTS will depend on the existence or non- 

existence of contraction possibility in stage 1. Consequently, we have proposed the 

following model to investigate this possibility. 
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 One of the following conditions is held at optimality:  

 (i)  If 0*  , then there will be no contraction possibility in stage 1 and CRS with 

      
OSE =1 will be considered as the two- stage overall RTS.              

 (ii) If 0*   then the two- stage overall RTS will be DRS with OSE = SE1 × SE2 at
 

      
 oyzx ,, **

 
. 

Also regarding to * , we can resize the scale of  oyzx ,, **  for improving its productivity 

as follows: 
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The discussion like above is held when SE1
 
<1 and SE2

 
=1.  

 

Case 3) If SE1
 
=1 and SE2

 
>1, then the existence or non-existence of expansion   

possibility in stage 1 is the recognition criterion of RTS measurement. In this case,   

model (17) examines this possibility.  
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 Considering the value of optimal objective function: 

 (i)  If 0*  , then there will not be any expansion possibility in  stage 1,  so  CRS  with 

      OSE =1 will be considered as the two- stage overall RTS.  

 (ii) If  0*   then  the  two- stage  overall  RTS will  be  IRS with OSE = SE1 × SE2  at 
 
 

  oyzx ,, ** . 

  By resizing the scale of  oyzx ,, ** , we have: 

  











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


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


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


 oSESESE yzx 21

**

1

*** 1,1,1           (18) 

Similarly, the type of RTS at  oyzx ,, **  and its corresponding OSE  are identified when 

SE1
 
>1 and SE2

 
=1. 

 

Case 4)  If    SE1
 
<1   and   SE2<1   (SE1

 
>1   and  SE2>1)  then   DRS  (IRS)    with   

OSE =SE1× SE2  will be considered as the  two-stage  overall  RTS and for  resizing the 

 oyzx ,, **  model(15) (model(17)) must be solved. 

 

Case 5) If SE1
 
>1 and SE2<1, three possibility for overall RTS can occur. In this case, 

first the value of k  is calculated according to the following equation:  

              

 k = SE1 × SE2                                                              (19) 

Therefore, three options may happen:  

(a) If k=1 then CRS with OSE =1 will be considered as an overall RTS. 

(b) If k<1 then the type of RTS will be determined by solving model (15), like case2. 

(c) If k>1 then the type of RTS will be determined by solving model (17), similar case3.  

 

The discussion similar above is held when SE1
 
<1 and SE2>1. 
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4. APPLICATION 
              

           In this section the proposed method is applied to 26 branches of an Iranian 

commercial bank that each branch has a two-stage structure. The two inputs to the first 

stage are personnel privilege and interest on deposit. The two intermediate measures (or 

the outputs from the first stage) are the total sum of four deposits and bank commission. 

The three outputs from the second stage are facilities, bank interest and other resources. 

Table 1 reports the data set and the last row of it indicates the unit costs associated with 

the inputs and intermediate measures.  

          Note that the first input i.e. the personnel privilege is composed of some effective 

factors on quality of the personnel including the record, university degree, educational 

major, skills, salary, and so on. This input is obtained after normalizing these factors 

and therefore it is a non-dimensional quantity. Moreover, dollar has been considered as 

the unit of the other inputs and outputs. The interest on deposit is an amount that each 

branch pays to the clients for long-term and short-term deposit accounts. The first 

intermediate measure contains the sum of four deposits which are opened by the clients 

in each branch. These deposits are long-term and short-term deposit accounts and 

current and savings accounts. Since each branch  allocates  20 percent of each deposit as 

 

Table 1.  Data Set 
 

Branch 

 

Personnel 

 Privilege 

 

 Interest 

    on       

deposit 

 

The total sum 

         of  

four deposits  

 

   Bank 

commission 

 

 Facilities 

    

Bank 

interest      

 

   Other 

  resources 

     1   16.07   99272.12  4143731.78      12867.52                                                   5860446.51    36842.48            269955.30         

     2     4.51   22352.29  1297892.47        3453.76   2580211.64      6252.27     19003.02 

     3     2.70   26618.04  1575703.62        6119.34   5059604.70      4381.66   179007.30 

     4           9.39 119015.92  5168841.25        5736.58 11952750.00 135671.57       2461.72 

     5       4.88   26845.16  1059214.24        1353.09    1457197.88    16292.55   127688.08 

     6      3.46   17949.54  1268440.57        1347.21    1155743.90      6229.55     17244.36 

     7   32.73 227103.63  9237666.67      20134.05  13465583.30  199134.83   189855.85 

     8   16.19 148001.68  5445175.15        6169.16    6634759.41  154826.53     48816.70 

     9     2.93   59020.12  1972679.62        3697.98    1761978.91    10117.50     28404.79 

    10   16.59 203862.72  7345164.97      15879.25    10089416.60  141897.84     96653.20 

    11     3.59   31241.74  1410375.56        3524.54    2614268.06     18070.47     41221.33 

    12     4.53   50118.70  2416600.94        3651.77    2310034.80     29392.00     21100.06 

    13     6.61   69974.13  3798898.97        5815.61    4297721.84     75786.22     34569.69 

    14     7.86   69715.60  2788445.39       10232.90     3110072.00     20333.53     43421.08 

    15   13.04 101411.85  4888892.41       16179.22    5247780.49     46160.11   559297.40 

    16     3.94   27250.03  1405237.22         2101.81    1504436.96     16665.64       9076.39 

    17     3.41   29349.74  1397802.73         4695.45         842394.62       9263.58     15249.70 

    18   23.18 427888.97 12776333.33       25000.39     26562416.60   298220.31 1306725.69 

    19   13.61   92975.89  3285315.38         4526.60         3312143.54     16195.50     36950.77 

    20   14.51 126342.59  3847575.67       14015.86      3831995.13     25919.06   282562.11 

    21     9.17   60606.61  2194132.21         7145.59    3393991.92     12540.40   510783.58 

    22     9.97 131315.43  4456843.56       12261.77    2251233.49    11812.49   150713.77 

    23     6.09   61520.92  1951258.99         5201.19    1551428.19       9801.87       4509.37 

    24   16.60 190186.41  5985318.54       16007.76    5788983.09       8715.10   793441.23 

    25      8.59   96531.47  4207147.44         4625.65    5761584.53     33098.30     61601.55 

    26   10.58 110215.82  3662413.36         5889.99    4672044.83     15736.23   255814.65 

 

Unit cost 

     

  $833.4 

    

       $1 

   

        $0.2 

      

              $1 

     

    _ 

 

       _ 

   

       _ 
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Table  2. RTS Measurement 
Branch   *

1x       *

2x    
  

*

1z    
 

*

2z   
cE      1SE   2SE   

 
*  RTS  

    1   4.39   44368.46 2472671.00   6263.22  0.57       0.79   1.10      0  CRS 

    2   3.22   20659.21 1220225.00   2838.92  0.93       4.88   3.03      _1   IRS 

    3   2.70      26618.04 1575703.62   6119.34  1.00       1.00   1.10      0  CRS 

    4 13.19 109552.60 5168841.00   5736.58  0.99       0.71   1.00      0  CRS 

    5   3.46   17960.22 1059214.00   1353.09  0.96       9.19   1.28      _1   IRS 

    6   3.46   17960.22 1059214.00   1353.09  0.85       9.19   1.28      _1   IRS 

    7 25.68 184695.80 7769791.00 12163.69  0.83       1.00   1.00      _1  CRS 

    8 14.52 117536.10 5445175.00   6169.16  0.97       0.72   1.00      0  CRS 

    9   3.39    18692.71 1102912.00   1756.34  0.53       7.28    3.97      _1   IRS 

   10 14.09 114969.80 5356346.00   6571.67  0.71       0.72   1.06 71068    DRS 

   11   3.27    20113.26 1319844.00   2538.36  0.90       5.34   1.59      _1   IRS 

   12   3.72    22626.22 1493821.00   1822.54  0.60       0.80   1.50      0  CRS 

   13    5.59    53066.83 2976534.00   3445.22  0.78         0.90   1.20 71079       IRS 

   14   3.35    22532.24 1456901.00   2953.67  0.50       0.80   1.51 71086     IRS 

   15     6.87    62700.73 3293314.00   8555.27  0.66       0.70   1.06      0  CRS 

   16   3.45    18014.43 1074939.00   1382.93  0.76       8.97   1.85      _1   IRS 

   17   3.46    17960.22 1059214.00   1353.09  0.74       9.14   1.28      _1   IRS 

   18 23.18 427889.00 1277633.33 25000.39  1.00       1.00   1.00      _1  CRS 

   19   3.17   22218.59 1427211.00   3435.04  0.41       0.79   1.52      0  CRS 

   20   3.47   33707.95 1975082.00   4808.07  0.47       0.85   1.14      0  CRS 

   21   4.26   39754.16 2194132.00   7145.59  0.95       0.76   1.00 71016    DRS 

   22   3.27   20061.89 1201304.00   2510.09  0.25       5.39   1.86      _1   IRS 

   23   3.44   18186.69 1072724.00   1477.76  0.51       8.46   4.37      _1   IRS 

  24 17.27 132167.90 5952119.00 13486.25  0.95       0.75   0.56      _1  DRS 

  25   4.04   38313.22 2201062.00   5133.87  0.51       0.86   1.29 71017     IRS 

  26   3.28   32465.36 1880447.00   5905.58  0.47       0.84   1.14 71085    DRS 

1. It is not necessary to compute *   for determining the RTS classification of the units 

which they have the same RTS situation in their two stages. 

 

the interest to the depositor, therefore $0.2 is considered as the unit cost associated with 

the first intermediate measure. The bank commission is an amount that each branch 

receives from the clients for providing different services. The facilities are the loans and 

other credit facilities that each branch pays to the clients. The second output i.e., bank 

interest is the amount of interest that each branch receives from the customers for 

providing facilities. The last output i.e., other resources are the revenues that each 

branch makes by investing on different projects.  

        Table 2 reports the results from models (1), (2), (15) and (17). The optimal inputs 

and intermediate measures from model (1) for each branch are reported under columns 

2, 3, 4 and 5. The cost efficiency corresponding to each branch appears in 6
th

 column. 

Using model (2), the columns 7 and 8 of table 2 represent the SE quantity for stages 1 

and 2, respectively. The 8
th

 column reports the value of *  for RTS measurement of 

some branches based upon models (15) or (17). Note that each branch needs the value 

of *  for improving their size according to relations (16) and (18). The last column of 

table 2 reports the state of overall RTS for cost efficient projection of each branch.   
  
                                        5. CONCLUDING REMARKS  

 

           The current paper discusses the problems of SE and RTS measurement in two-

stage DEA. In a two-stage process, the first stage outputs which are the intermediate 

measures, will serve as the inputs of the second stage. In fact, this research has extended 

the RTS concept from classical DEA to the two-stage DEA. The proposed method 
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determines the SE quantity and the type of overall RTS for the two-stage process 

considering the SE quantity in each stage.  

           Congestion indicates an economic state where inputs are overly invested. In other 

words, congestion is identified when an increase in one or some inputs causes the 

worsening of one or more outputs. From an economic theory, the issues of RTS and 

congestion are closely interrelated. Therefore investigating the congestion concept in 

two-stage DEA can be the future research issue.  
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