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Abstract- In recent years, many scientists have focus on the studies of the Allee effect 

in population dynamics. This paper presents the stability analysis of equilibrium points 

of population dynamics with Allee effect which occurs at low population density. 
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1. INTRODUCTION 

 

When previous studies have been examined on population dynamics including 

differential and difference equations, it is generally observed that Allee effect can have 

either a stable or an unstable effect on the system [1,3,5,6,8,9,11-14,16-19]. 

Nonetheless, discrete-time models are more suitable for numerical solutions and 

calculations [10,15]. 

Allee effect was first defined by Allee as negative density dependence when the 

growth rate of the population decreases in low population density. This effect can 

consist of social dysfunction at small population size, inbreeding depression, food 

exploitation, predator avoidance of defence and difficulties finding in mates. Authors 

have studied the stability of different population models within the framework of these 

effects and developed similar models. Besides, stability analysis is an important 

research topic in such studies. 

In this present study, our purpose is to investigate and compare the stability of 

equilibrium point with and without Allee effect by considering a more general state of 

the model studied in [3]. Let's look at the nonlinear general delay difference equation 

),,,( 211   tttt NNNFN                                                                                               (1) 

where   is per capita growth rate which is always positive, tN  represents the 

population density at time t  and T  is the time for sexual maturity. Also, F  has the 

following form: 

0),,(),,,( 2121    tttttt NNfNNNNF  

where ),( 21  tt NNf  is the function describing interactions (competitions) among 

mature individuals.   

We assume that f satisfies the following conditions: 

(1) ).,0[0),(/,0),(/ 21   NforNNNFNNNF tt  

(2) f(0,0) is a positive finite number. 

This paper is organized as follows: In section 2, first of all, we give a 

characterization of the stability of the equilibrium points of Eq.(1). In section 3, we 

work on the stability analysis of the equilibrium points in Eq.(1) with the Allee effect. 

In section 4, we present numerical simulations that support the analytical result. Finally 
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the last section of the paper includes conclusions. 

 

2. STABILITY ANALYSIS OF Eq.(1) 

 

Before we give the main results of this paper, we shall remind the following 

Schur-Cohn criterion (see references [2,4,15]). 

 

Theorem 1. (Schur-Cohn Criteria) The roots of the characteristic polynomial, 
1 2

1 2( ) ...k k k

kg a a a                                                                   

lie inside the unit circle if and only if the following hold: 

(i) (1) 0g   

(ii) ( 1) ( 1) 0,k g    
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are positive innerwise. 

The characteristic polynomial which is getting from linearization of Eq.(1) around *N  

will be  
3 2( ) .g p q r        

Assume that Eq.(1) has an equilibrium points as *.N  Then we get the following 

theorem. 

 

Theorem 2. *N  is locally stable if and only if the inequalities 
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hold. 

 

Proof. From the equilibrium point definition of Eq.(1), we have 
* *1 ( , ).f N N                                                                                                               (5) 

Let’s take ),,(),,,( ****

1
NNFqNNFp

tt NN 


  and r ),,( **

2
NNF

tN 


. Given 

Eq.(5), 1.p   From Eq.(1), the values of q  and r  are 
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We get that *N  is locally stable if and only if 

qrp  1  and 21 rqpr                                                                                    (6) 

by Theorem 1. If we write the values of ,p  q  and r  in the first inequality of Eq.(6), we 

obtain 
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It is easy to see that in this case 
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Since 
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1tNf  are negative values for [0, ),N   the last inequality is always 

provided. Therefore, (2) is confirmed. 

Now, if  the values of ,p  q  and r  are written in the second inequality in (6), we 

get 
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If  the last expressions is written in the form of two inequalities, we can write 
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as confirmed. 
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3. ALLEE EFFECTS ON THE DISCRETE DELAY MODEL (1) 

 

In this section, we study the local stability analysis of the equilibrium points of 

Eq.(1) with the addition of Allee effect at time 2,t   t  and ( , 2).t t   

3.1. Allee effect at time t-2 
     

We consider the following non-linear delay difference equation by the addition 

of Allee effect to discrete delay model Eq.(1) 

0),,()(),,,( *
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1  


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tttttttt NNfNNNNNFN                        (7)               

where the function f  satisfies the properties (1) and (2). The conclusion of the 

biological facts requires the following assumption on α. 

 (3) if  0,N   then ( ) 0;N   that is, there is no reproduction without partners. 

 (4) 0/  N  for (0, );N   that is, Allee effect decreases as density increases. 

 (5) lim ( ) 1;N N   that is, Allee effect vanishes at high densities. 

Eq.(7) has the same positive equilibrium points with (1), since *  is normalized 

growth rate such that * / .    Then we get the following theorem. 
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hold. 

 

Proof. From the equilibrium point definition for Eq.(7), it is clear that 
* * *( , , ) 1.

tNp F N N   Likewise, if the values of q  and r  are calculated for Eq.(7), 

we get 
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 For the second inequality in (6), we arrive at 
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From the last two inequality, we can write 
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as required. 
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3.2. Allee effect at time t-1 

 

Let us consider the following non-linear delay difference equation by the 

addition of Allee effect to discrete delay model (1) 
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*N  equilibrium point of Eq.(11) is positive equilibrium point of Eq.(7). Then we have 

the following theorem. 
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Proof. According to Eq.(11), the values of ,p  q  and r  are as follows 
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or equivalently, 
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If we consider the other inequality in (6), we get 
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3.3. Allee effect at time t 

 

We now incorporate an Allee effect into the discrete delay model as follows: 
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*N equilibrium point of Eq.(15) is positive equilibrium point of Eq.(7). Then we can 

state the following theorem. 

 

Theorem 5. *N  is locally stable if and only if the inequality 
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hold. 
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Proof. If  the values of ,p  q  and r  are written in Eq.(15), we have 
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Let's consider stability conditions in (6). Thus, we get 
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The last inequality can be written as follows, 
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Now, when the process is regulated for the second inequality in (6), we obtain 
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Consequently, (16), (17) and (18) are confirmed. 

 

Corallary 6. Allee effects at time 1,2  tt  and t  decreases the stability of Eq.(1) 
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Eq.(1) is stable if and only if  
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If the values of ,x  y  and z are written in the stability conditions of Eq.(7), Eq.(11) and 

Eq.(15), we obtain 
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respectively. It is clear that for each value  of x  and ,y  which provides inequality (19), 

at least one of the conditions (20), (21) and (22) is not satisfied (for each z>0). In other 

words, stable equilibrium point of Eq.(2) is not stable for equations (7), (11), (15). 

 

4. NUMERICAL SIMILATIONS 

 

In this section, we numerically present our the analytical result obtained in the 

former sections by using MATLAB programming. We graph the 2D trajectories of the 

population dynamics model (1) with and without Allee effect at time 1,2  tt  and t  

in Fig. 1, Fig. 2 and Fig. 3, respectively. In this figures we take the function 

)1(),( 2121   tttt NNNNf (see, for instance [7]) and the Allee function 

),/()( iii NNN    1,2  tti  and ,t  where   is a positive constant. It is 

obvious from the graph that the comparisons of the population density diagrams also 

verify the stabilizing impact of the Allee effects. In these computations, the initial 

conditions are taken as 2 10.2, 0.3,N N    0 0.4N   and 9.1  that yield the 

corresponding equilibrium point as .4737.0* N  In addition, the parameter value is 

taken as 0.03.   Normalized growth rate is * 2.0204   such that * *( ).N    
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Fig. 1. Density-time graphs of the models 
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Fig. 2. Density-time graphs of the models 
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Fig. 3. Density-time graphs of the models 

)1( 211   tttt NNNN  and 21

*

1 1)((   ttttt NNNNN   with 

)(,03.0),/()(,9.1 ** NNNN ttt    

 

These numerical simulation are consistent with the analytical result obtain in the former 

sections and supports the mathematical analysis. 

 

5. CONCLUSION  

 

Former studies indicate that Allee effect has different effects on different 

populations. Mathematical formulations of the population will provide information to us 

about the factors effecting population and the development of that group of living 

beings in the future. This situation is important in that it contributes to the establishment 

of equilibrium in life cycle, which is situated in Biology. 

In this paper, we studied on a third degree delay difference model under a 

competitive effect. Firstly, we obtained the stability conditions of the equilibrium point 

of this model. Then, we investigated the stability of the equilibrium point of the model 

together with Allee effect. We compared the stability of these models with and without 

Allee effect. In conclusion, we observed that Allee effect reduced stability in the model 

class that we studied. 
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