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Abstract-Symmetric nuclear matter properties such as binding energy, pressure, 
saturation density and incompressibility are investigated in the Skyrme Hartree-Fock 
model. A new set of Skyrme parameters for symmetric nuclear matter is obtained by the 
fitting of Variational Monte Carlo method results to density-dependent Skyrme type 
energy. The results obtained are in good agreement with those obtained with selected 
Skyrme parameter sets in the literature. 
Key Words- Symmetric nuclear matter, Skyrme interaction, Variational Monte Carlo 
method. 
 

1.I
TRODUCTIO
 

Nuclear matter is an idealized system of interacting protons and neutrons. It is 
not matter in a nucleus, but hypothetical system consisting of a huge number of protons 
and neutrons interacting by only nuclear force and no Coulomb force. Volume and 
particle number are infinite, but the ratio is finite. Infinite volume implies no surface 
effects and translational invariance (only differences in position matter, not absolute 
positions). A common idealization is symmetric nuclear matter, which consists of equal 
numbers of protons and neutrons. The investigation of ground state properties of nuclear 
matter is one of the fundamental subjects in nuclear physics. Many calculations have 
been performed using different methods to obtain properties of symmetric nuclear 
matter [1-7]. One of the most important approachs to nuclear matter calculations is the 
Skyrme-Hartree-Fock (SHF) method [8-21]. Because the Hartree Fock (HF) 
calculations with Skyrme’s density-dependent effective nucleon-nucleon interaction are 
very useful and successful for describe the ground state properties of the symmetric 
nuclear matter and neutron matter. In order to determine the parameter sets of all 
Skyrme interactions, known experimental quantities such as binding energy and 
saturation density can be used. The pioneering work of Brink and Vautherin [8] of 
implementing the Skyrme-type effective force was carried out to reproduce the 
experimental data on the binding energy and charge rms radii. Many calculations on the 
new set of Skyrme parameters were performed by various authors [22-25]. The 
parameters of Skyrme interaction [26] are obtained in these self consistent HF 
calculations by fitting the experimental binding energies, charge radii and other single-
particle properties of the spherical nuclei [23]. Also, there is a lot of Skyrme interaction 
parameter set which were obtained by the fitting of the HF results to experimental data 
on bulk properties of a few stable closed-shell nuclei in the literature. Recently, studies 
involving the generalized Skyrme effective force (GSEF) have been revisited [27-30]. 
 In our previous studies, we have obtained ground state properties of symmetric 
nuclear matter (SNM) [1] and some thermodynamics properties of asymmetric nuclear 
matter (ASNM) [31]. In this paper, we obtained the new Skyrme parameter set for 
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symmetric nuclear matter by fitting the obtained results from Variational Monte Carlo 
(VMC) calculations to the Skyrme energy density functional. The realistic Urbana two 
nucleon interaction potential of Lagaris and Pandharipande was used for VMC 
calculations of nuclear matter. However, we investigate the some properties of 
symmetric nuclear matter with the new Skyrme interaction parameters.  

The rest of this paper is organized as follows. In Sec. 2, we describe the details 
of the calculations and present the new Skyrme parameter set. In Sec. 3, we give the 
results obtained with new Skyrme parameter set for symmetric nuclear matter. We 
conclude the paper in Sec. 4. 
 

2. THE CALCULATIO
 PROCEDURE 

 
The calculations of this paper are twofold. Firstly, we calculate energy values as a 
function of density for symmetric nuclear matter by Variational Monte Carlo (VMC) 
method. These values will be used to obtain the new Skyrme parameter set. Secondly, 
we calculate symmetric nuclear matter properties such as binding energy, saturation 
density, pressure and incompressibility with the new Skyrme parameter set. 
 
2.1. 
ucleon-nucleon interaction Potential 

 

The Hamiltonian operator for a system which consist of N nucleons interacting 
through a two body interaction potential ijV  is given by  

 H ∑ ∑
<

+∇−=
ji

iji V
m

2
2

2

h
  (1) 

If this operator is known, one can determine the ground state properties of nuclear 
matter. However, an assumed realistic two-body potential ijV  should correctly 

reproduce the saturation point of nuclear matter. In order to obtain correct binding 
energy and saturation density of nuclear matter, two-body potential ijV  fitted to the 

phase shifts observed in scattering experiments. However, it is necessary various 
operator components, because the phase-shift data varies greatly from channel to 
channel requires. Lagaris and Pandharipande were proposed the Urbana V14 potential 
which contains 14 operator components. These operator components were obtained by 
fitting the phase-shift data from low energy nucleon-nucleon scattering experiments and 
the properties of the deuteron [32,33] : 
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The terms depending on the relative angular momentum operator L
v

, do not 
considerably effect the binding energy due to the symmetrical nature of the nuclear 
matter. The contributions of the first four terms are much stronger than latter terms, 
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because the effect of latter terms is smaller than the statistical fluctuations inherent to 
the Monte Carlo technique so the inclusion of these terms was pointless. Therefore only 
the first four terms of Urbana potential were retained in the calculations of expectation 
value. Thus we have used the two body interaction 

).)(.().().( jijijiji

c

ij VVVVV ττσσττσσ σττσ +++= ,  (3) 

where ,,, τσ VVV c  and στV  depend only on the distance between the nucleons i and j. 

Each term in Eq. (3) has three parts 
i
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where 17.0 −= fmµ  is the inverse compton wavelength for pions. The intermediate and 

short range parts are 

 ( ) ,1
)(

33
1)(

2

2

2









−








++= −

−
cr

r
ii

I e
r

e

rr
IrV

µµµ

µ

 

and 

aRr

i
i

S
e

S
rV

/)(1
)(

−+
=  (6) 

respectively. Values of the potential strengths Ii and Si and the parameters c, R, a are 
given in Table 1.  

In fact, all two nucleon interaction models estimate too large equilibrium 
densities for nuclear matter. However, there is not much known about the exact nature 
of the three nucleon interactions, and experimental data is not available. Therefore one 
has to consider three body interactions in a “somewhat” arbitrary way. 
 Significantly realistic two nucleon interactions seem to overbind nuclear matter 

at high densities ( 324.0 −〉 fmρ ) and slightly underbind at lower densities ( 315.0 −〈 fmρ ). 

Consideration of the three and more body effects should be able to correct this 
discrepancy. 

Table 1. Parameters of the Urbana V14 nucleon-nucleon potential. 

  c=0.2 fm-2, R=0.5 fm, a=0.2 fm 

The observations of overbinding at high densities suggests that the repulsive part 
of the two body interactions should be more effective at high densities. In order to have 
this effect we have used a potential including the three body interactions 

[ ]βπ αρ)(114 +++=+ sI vvvT"Iv . (7) 

I  iI  
iS  

C -5.7030    2575.3 

σ    0.7628  -366.56 

τ    0.8892  -466.56 

στ  -0.2790   402.81 
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α  and β  in the above equation are free parameters and are adjusted so as to obtain the 

correct properties of the nuclear matter. The same parameters were also used for the 
calculations of the neutron matter. 
 
2.2. The Variational Monte Carlo method 

In Variational Monte Carlo method the ground state wave function )(0 R
v

Ψ  is 

approximated by a variational wave function )(RV

v
Ψ  with many variational parameters, 

which are determined by minimizing 〉〈H . We will base our calculations on a Jastrow 

type wave function of the form 

 ∏
〈

Φ=Ψ
ji

ijjj rfR )()(
v

 , (8) 

where Φ  is the many particle wave function for the system of non-interacting particles 

and R
v

 is a 3N dimensional vector representing the coordinates of particles, while jf  is 

the two particle correlation function. Jastrow suggests that this correlation function in 
general be an operator function [34]. However in most applications jf  is assumed to 

depend only on the interparticle distance, jiij rrr
vv

−= .  

 In order to simulate the nuclear matter, we will consider a system of N nucleons 
confined in a cube of side L with periodic boundary conditions. Therefore for the single 
particle wave functions we can use the plane waves 
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where Lnk /2
vv
π=  and n is an integer vector. Because of the symmetry of the ground 

state we can use real plane waves 
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instead of complex plane waves in eq.(9). Under these conditions the many particle 
wave function in eq.(8) becomes 

 ∏
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where sD  is the slater determinant of single particle wave functions  
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For the two particle correlation function fj in eq.(8) we chose a function similar to the 
Woods-Saxon potential  
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where t, r0 and a are variational parameters. We define the pseudo potential )(ru  for 

practical reasons as 
 ))(exp()( ijijj rurf −= ,      ( ))(ln)( ijjij rfru −=   (14) 

then our variational wave function becomes 
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 The method of sampling the wave function is identical to that used for classical 
ensembles [35]. The only complication that arises is the evaluation of the determinant. 
Initial coordinates are chosen randomly for each particle from an initial Monte Carlo 
random walk. The particles are then moved one by one to new trial positions. Suppose 
particle 1 is being moved. Then its new trial position newr  is 

 ξ
vvv

+= 1rrnew   (16) 

where ξ
v

 is a random vector uniformly distributed in a cube of side ∆  centered at the 

origin. The new position for particle 1 is accepted with a probability equal to 
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If the absolute value of the wave function at the new position is larger than that at the 
old position, the new coordinates are automatically accepted. This random walk is 
Markovian and by the usual argument [36] the set of coordinates generated by a 
sufficiently long calculation is an unbiased sample drawn from the probability 
distribution 

 

∫ Ψ

Ψ
2

2

)(

)(

RRd

R
vv

v

.  (18) 

 The expectation value of any operator F is then simply the average value of the 
operator evaluated for the coordinates of the random walk with M moves 
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Total energy of the system is calculated using this approach. The contribution of the 
nucleon-nucleon interactions to total energy are calculated for interparticle separations 
up to a cut off distance of L/2. A reasonable approximation to include the contributions 
of the pairs farther apart is to assume that the density of particles is constant outside this 
interaction sphere.  

For each density the total energy corresponding to the Hamiltonian of the system 
is calculated for various values of the parameters in the trial wave function. Then the 
variational parameters 0r , a, and t are determined from these calculations so that the 

total energy is a minimum. Then a final Monte Carlo calculation of the system with the 
optimized parameter set is performed. 
 We consider a system of N nucleons confined in a cube of side L with periodic 
boundaries. For the symmetric nuclear matter there are four nucleons in each spatial 
state. In order for our wave function to represent all symmetries of the ground state the 
number of neutrons or protons must be chosen from the set (2, 14, 38, 54, 66, 114, …). 
VMC method and calculations for nuclear matter are described in detail in ref. [1, 31]. 
2.3. The Skyrme Hartree-Fock calculations 

 

The effective interaction proposed by Skyrme was desined for HF calculations 
of nuclei. It contains basically of a two-body part which is momentum dependent, and 
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zero range three-body part. The role of the latter part is to simulate the effects of short-
range correlations since it is equivalent in HF calculations to a two-body force with a 
linear density dependence [8]. 

We use the Skyrme interaction as well as the corresponding HF equations which 
are described in detail in ref.[8]. For the Skyrme interaction the energy density )(rH

v
 is 

given as follows [9] : 
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where )( pn ρρ is the density of neutrons (protons) and ρρρ =+ pn , while )( pn ττ  and 

)( pn JJ
vv

 are te kinetic energy and the spin-orbit densities of neutrons (protons), 

repectively. τττ =+ pn , and pn JJJ
vvv

+= . The direct part of the Coulomb interaction 

in )(rH C

v
 is )()(

2

1
rrV pC

vv ρ , where 

'3

'

2

)()( rd
rr

e
rrV pC ∫ −

= vv

vv ρ .        (21) 

t0, t1, t2, t3, x0 and W0 in Eq.(20) are parameters of the Skyrme interactions. Table 2 
shows selected Skyrme parameter sets [8]. 
 

Table 2. Selected parameter sets of Skyrme interaction in the literature. 
FORCE t0 (MeV.fm3) t1 (MeV.fm5) t2 (MeV.fm5) t3 (MeV.fm6) x0 W0 

(MeV.fm5) 

SI -1057.3      235.9 -100 14463.5 0.56 120 
SII -1169.9      585.6      -27.1   9331.1 0.34 105 
SIII -1128.75      395.0      -95.0 14000.0 0.45 120 
SIV -1205.6      765.0       35.0   5000.0 0.05 150 
SV -1248.29 970.56       107.22         0.0  -0.17 150 
SVI -1101.81 271.67 -    138.33 17000.0  0.583 115 

 
2.3.1. symmetric nuclear matter 

As we have mentioned before, nuclear matter is a uniform hypothetical system 
with translational invariance and has a fixed ratio of neutrons and protons (ignoring the 
Coulomb forces). When the number of protons and neutrons are the same, the system is 
called symmetric nuclear matter : 

ρρρ
2

1
== pn ,   τττ

2

1
== pn ,     0== pn JJ

vv
,  (22) 

and 0. =∇=∇ J
vvv

ρ , 3

23

2
Fk







=
π

ρ , 2

5

3
Fk=τ . Thus, from Eq.(20) one can get the binding 

energy per particle for SNM : 
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Where mkT FF 2/22
h=  is the kinetic energy of a particle at the Fermi surface. From 

Eq.(23) one can write the expressions of pressure P and incompresibility K for 
symmetric nuclear matter: 
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 The resulting sets of Skyrme parameters are not six. Over seventy 
parametrizations of the Skyrme interaction have been published so far. The some of 
them are : SVII [13], SkM [12], SGI, SGII [37], Sk2 [8], Sk3 [9,16], Skb [10]. The aim 
of this study is to obtain the new Skyrme parameter set that can describe properties of 
nuclear matter. Firstly, we have calculated energy values as a function of density for 
SNM by VMC method. The realistic Urbana two nucleon interaction potential of 
Lagaris and Pandharipande was used for VMC calculations of SNM. Also many body 
interactions are included as a density dependent term in the potential. Then, the new 
parameter set of Skyrme interaction, which is t0=-982.424 MeV.fm3, t3=16938.92 
MeV.fm6, and (3t1+5t2)=-559.205 MeV.fm5, obtained by fitting the results obtained 
from VMC calculations to the Skyrme energy density functional. However, From Eq. 
(23), Eq. (24) and Eq. (25), we have obtained binding energy, saturation density, 
pressure and incompressibility for SNM with the new Skyrme parameter set. The given 
six parameter set of Skyrme interaction in table 2 are selected for the compare with the 
new Skyrme parameter set in this study.  
 

3. RESULTS 

 

In this section we present the new Skyrme parameter set and the results obtained 
by this parameter set. The obtained new Skyrme parameter set are given in Table 3 with 
selected Skyrme parameter set.  
 

Table 3. New Skyrme parameter set with selected Skyrme parameter sets. 

FORCE t0 (MeV.fm3) (3t1+5t2) (MeV.fm5) t3 (MeV.fm6) 
SI -1057.3 207.7 14463.5 
SII -1169.9 1621.3 9331.1 
SIII -1128.75 710 14000.0 
SIV -1205.6 2470 5000.0 
SV -1248.29 3447.78 0.0 
SVI -1101.81 123.36 17000.0 
This study -982.424 -559.205 16938.92 

We have obtained the binding energy per nucleon at densities between 
30.01fmρ −=  and 30.20fmρ −=  in 0.01 steps with the new Skyrme parameter set. The 

obtained values of the energy for SNM are given Table 4 From these data, we have 
obtained the saturation density, saturation energy, pressure and incompressibility of 
SNM.  
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Table 4. Values of energy for symmetric nuclear matter per nucleon obtained with new Skyrme 
parameter set. 

Density (fm-3) E/A (MeV) Density  (fm-3) E/A (MeV) 
0.01 -0.11310 0.11 -13.4769 
0.02 -1.53730 0.12 -14.1831 
0.03 -3.13570 0.13 -14.7346 
0.04 -4.75430 0.14 -15.1277 
0.05 -6.32760 0.15 -15.3593 
0.06 -7.82000 0.16 -15.4268 
0.07 -9.20885 0.17 -15.3279 
0.08 -10.4788 0.18 -15.0605 
0.09 -11.6188 0.19 -14.6229 
0.10 -12.6204 0.20 -14.0134 

Table 5 shows binding energy, saturation density, Fermi momentum and 
incompressibility of SNM with selected Skyrme parameters in the literature. Figure 1 
shows the energy results along with those obtained with selected Skyrme parameters in 
the literature.  

 
Table 5. Binding energy, saturation density, Fermi momentum and incompressibility of symmetric 

nuclear matter with selected Skyrme parameter sets in the literature. 

Skyrme Interactions 
Binding Energy 

E/A (MeV) 

Saturation density 
ρ  (fm-3) 

Fermi momentum 
kF (fm

-1) 
Incompressibility K (MeV) 

SI -15.78 0.155 1.31 335 

SII 
-16.00 [9] 
-15.811 

0.148 [9] 
0.149 

1.30 [9] 
1.30 

342 [9] 
352 

SIII 
-15.87 [9] 

-15.65 
0.145 [9] 

0.146 
1.29 [9] 

1.29 
356 [9] 

320 

SIV 
-15.98 [9] 
-15.790 

0.152 [9] 
0.151 

1.31 [9] 
1.30 

325 [9] 
319 

SV 
-16.06 [9] 
-15.867 

0.155 [9] 
0.154 

1.32 [9] 
1.31 

306 [9] 
281 

SVI 
-15.77 [9] 
-15.567 

0.145 [9] 
0.149 

1.29 [9] 
1.30 

364 [9] 
339 

This study -15.42 0.159 1.32 385 
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Figure 1. Binding energy per nucleon obtained with selected Skyrme parameter sets 

along with the results of this study (solid disks). 
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In Table 6, the pressures of the SNM at each density obtained from Eq. (5) are given. 
Our pressure results (solid disks) and the results obtained with selected Skyrme 
parameters in the literature are compared in Figure 2. 
 

Table 6. Values of pressure of the symmetric nuclear matter obtained with new Skyrme parameter set. 
Density  
(fm-3) 

Pressure  
(MeV.fm-3) 

Density  
(fm-3) 

Pressure  
(MeV.fm-3) 

0.01 -0.01805 0.11 -0.97461 
0.02 -0.06920 0.12 -0.95635 
0.03 -0.14861 0.13 -0.86691 
0.04 -0.25085 0.14 -0.68871 
0.05 -0.36979 0.15 -0.40233 
0.06 -0.49851 0.16 0.013614 
0.07 -0.62914 0.17 0.582597 
0.08 -0.75277 0.18 1.330277 
0.09 -0.85935 0.19 2.284626 
0.10 -0.93754 0.20 3.476040 
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Figure 2. Pressure of symmetric nuclear matter obtained with selected Skyrme 
parameter sets along with the results of this study (solid disks). 

 
The obtained pressures for SNM are also compared with the pressures values 

obtained by Friedman and Pandharipande [38] in Figure 3.  
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Figure 3. Pressure of symmetric nuclear matter obtained by Fiedman and 

Pandharipande along with the results of this study (solid disks). 
 
The incompressibility of the SNM at each density obtained from Eq. (6) are given in 
Table 7. A comparison similar to Fig.1 and Figure 2 is given Figure 4 for 
incompressibility of SNM. There is a good agreement between the seven curves. 
 The resulting empirical saturation point has an energy per particle between -15 
and -17 MeV and Fermi momentum kF in the range 1.29-1.44 fm-1 [7]. In this study, the 
values of binding energy and Fermi momentum are found -15.42 MeV and 1.32 fm-1 
respectively. These results are in good agreement with empirical values. 

It can be seen from Figure 1 and Figure 2 that values of binding energies and 
pressures obtained in this study are good agreement with those obtained with selected 
Skyrme parameter set (SI-SVI). Also, it is observed that both our results are in good 
agreement with those of Friedman and Pandharipande for the pressures of SNM.  

Table 7. Values of incompressibility of the symmetric nuclear matter obtained with new Skyrme 

parameter set. 
Density 
(fm-3) 

Incompressibility 
(MeV) 

Density 
(fm-3) 

Incompressibility 
(MeV) 

0.02 -24.041 0.12 155.261 
0.03 -30.389 0.13 204.054 
0.04 -31.665 0.14 258.594 
0.05 -27.662 0.15 318.898 
0.06 -18.256 0.16 384.983 
0.07 -3.360 0.17 456.864 
0.08 17.087 0.18 534.555 
0.09 43.137 0.19 618.067 
0.10 74.829 0.20 707.412 
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Figure 4. Incompressibility of symmetric nuclear matter obtained with selected 

Skyrme parameter sets along with the results of this study (solid disks). 
 

To sum up, in this paper we have the new Skyrme parameter set for SNM 
calculations. As an application of the new Skyrme parameter set we have calculated the 
binding energy, saturation density, pressure and incompressibility of SNM. 
 

4. CO
CLUSIO
 
The empirically known bulk properties of nuclear matter, such as the binding 

energy, saturation density, incompressibility, etc., which starting from the underlying 
two-body interactions, are one of the fundamentals of nuclear matter theory [39]. 
Calculations of binding energy as a function of density of symmetric nuclear matter 
have been made for many nucleon-nucleon potentials [32, 33, 40]. However, the 
Skyrme potential and other phenomenological potential models are very convenient and 
useful in the calculations of the bulk properties of nuclear matter, however before using 
such potentials the reliability of the potential model should be established. Monte Carlo 
simulation results obtained in this study from a nucleon-nucleon potential may serve as 
a means to evaluate relative merits of various phenomenological models. Also the 
obtained data used to optimize the parameter set of Skyrme interaction potential. 
There are many known the Skyrme nucleon-nucleon interaction of it which reproduce 
experimental data for the ground state of finite nuclei and for the observables of infinite 
nuclear matter at the saturation density, giving more and less comparable agreement 
with experimental or expected empirical data. Here, we have presented a new Skyrme 
parameter set that can describe properties of symmetric nuclear matter as described by 
realistic approach of nuclear matter. However, the ground state properties of symmetric 
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nuclear matter are investigated with the new Skyrme parameter set. If our results 
compared with the obtained results by other selected Skyrme parameter sets, it is 
observed that no any serious differences between our results and selected results. 
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