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Abstract- A direct full-wave solution via the Analytical Regularization Method (ARM) 
is proposed for the diffraction problem concerning knife edges under TM wave 
excitation. This problem is reduced to solving an infinite linear algebraic equation 
system of the second kind which, in principle, can be solved with arbitrary 
predetermined accuracy via a truncation procedure.
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1.INTRODUCTION

Multi-strip models are helpful for analyzing radio wave propagation over hills 
(in rural areas) or over buildings (in urban areas), where they are widely known as 
“knife edges” [1]. An analytical solution for single-strip diffraction is numerically 
impractical to implement [2, 3], especially when the model requires multi-strip systems. 
For this reason and because of the enormous range of the problem’s domain, either 
physically corrected Fresnel or Kirchhoff diffraction models [4, 5] or high frequency 
approximations [1, 6] and marching methods applied to the parabolic approximate of 
the wave equation [7] are used to accurately investigate the related physics.

In order to investigate the transverse magnetic (TM, or E-Polarized) wave 
diffraction by a knife edge model constructed by an electrically perfect-conductor multi-
strip system, we propose a direct, mathematically rigorous and numerically efficient 
alternative approach that revives a version of the Analytical Regularization Method 
(ARM) [12]. Direct-numerical methods such as the Moment Method, the Finite 
Difference Method, and others, usually require additional supporting verification since 
these methods entail solving a system of linear algebraic equations of the first kind 
(SLAE1) [8]. In using ARM, we present a full-wave alternative formulation for such 
problems which leads to solving a set of linear algebraic equations of the second kind 
(SLAE2) [12]. The direct implementation of said formulation without using fast 
calculation techniques for the matrix entries (e.g. [9]) (incorporated with an appropriate 
iterative linear solver whose performance is in favor of the SLAE2 we aim to construct 
using ARM for knife edge diffraction (see [10])), is easily applicable up to the VHF 
band. Given that the SLAE2 solutions provided by ARM can be considered a perfect 
tool for the verification of approximate, direct-numerical and experimental methods, as 
well as for the analysis of their errors, ARM provides a basic and mathematically 
rigorous template suited for the knife edge diffraction problem under investigation even 
at higher frequencies. Consequently, and in principle, the diffraction boundary value 
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problem can be solved numerically and with arbitrary accuracy, limited solely by 
memory volume and efficient computer use. 

We start with a rather classical solution scheme for the considered problem 
which arrives at an SLAE1 in space l2 and use ARM for its regularization, i.e., for the 
mathematically rigorous construction of an SLAE2 that is equivalent to the original 
boundary value problem (BVP) in space l2. (The space l2 corresponds best to the space 
of numbers and operations in a finite precision computational environment, i.e., the 
computer (see [11]).) Thus, the ARM approach we propose builds on the Orthogonal 
Polynomials Method (OPM) invented in [14], one and a half decades prior to [17], and 
on the ARM ideas presented in [12] through [16]. Implementation of a special case of 
the ARM (even though not named there with this terminology-see the discussion after 
(9)) for a more generally defined geometry of S can also be found in [18].

The remainder of this piece unfolds as follows: First, we formulate the problem 
under consideration and delineate the corresponding ARM algorithm leading to an 
SLAE2. Next, we provide the numerical results for near field and far field distribution 
of the knife edges under incidence of a plane wave (post rigorous simulation by ARM) 
and the numerical results for the current density distribution (which are compared to 
those obtained by point-matching (PM) solution of the integral equation under 
consideration). Subsequently, we compare the ARM condition numbers to the condition 
numbers of the PM solution and to those of two more regularizing options that also lead 
to an SLAE2 of the integral equation under consideration, and thus elucidate the 
significance of such algebraic systems (AS).

2. FORMULATION

2.1. TM Wave Diffraction Boundary Value Problem
Consider the diffraction of an incident e-it time-harmonic (:angular frequency) 

electromagnetic TM wave with E-field Ei(q) by perfectly conductive and infinitely thin 
screens defined with the parameterized surface union S=Sj, where SjSm= for mj
by means of an injective parameterization Sj={j(u)=(xj(u),yj(u))R2:u[-1,1]}, 
j=1,2,…,N. In general, the coordinates of j belong to Hölder class C1,(Sj), (0<1
henceforth) [19], but for the knife-edge model, the parameterization is linear, so j C.
The scattering E-field satisfies the homogenous Helmholtz equation in free space except 
S: (+k2)Es(q)=0, qR2\S. Es(q)=S J(p)G(q,p)dS qR2\S is the integral representation of 
such a field for the Dirichlet condition, Etotal(q)=Ei(q)+Es(q)=0, qS, with the 
fundamental solution G(q,p)=[-i/4] H0

(1)(k|q-p|) (or the Green’s function) of the 
Helmholtz equation in free space in R2 and H0

(1) is the Hankel function of the first kind 
and order zero, where k is the free space wave number and |q-p| is the distance between 
points p and q. |q|1/2(/|q|-ik)U(q)0, with |q|, i.e. the Sommerfeld radiation 
condition is satisfied where U can either be Es or G for either of its arguments. J(p) is 
the current density on S, which actually is the jump between the normal derivative 
values of Es(q) on both sides of S. On each Sj the Meixner edge condition
Jj(p)=[d1j(p)d2j(p)]-1/2wj(p) is satisfied, where d1j(p) and d2j(p) are the distances to the 
two edges and wj(p)C0,(Sj), i.e. belongs to corresponding Hölder class [19]. As 
mentioned above, the Dirichlet boundary condition requires that the total E-field on S be 
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zero in order to arrive at the integral equation S J(p)G(q,p)dS=-Ei(q) qS which, for the 
problem being considered, is of the first kind. For the elements of the surface union S, 
G(q,p) has logarithmic singularity when j=m and pj=qj, otherwise, is infinitely smooth. 

In the next sub-section we cover the canonical integral equation of the TM wave 
diffraction boundary value problem for ARM when S consists of a single strip.

2.2. OPM and ARM for the Canonical Integral Equation with Logarithmic 
Singularity

Consider the following canonical integral equation,

        
1

1

1
ln , 1,1,u v u v z v dv b u u



       , (1)

with unknown function z(v). Suppose all other functions in (1) are known and smooth 
enough for our purposes. In particular, K(u,v) is continuous with its first derivatives and 
its mixed derivatives of the second order are square-integrable. We are looking for 
solutions of the kind z(v)=(1-v2)-1/2w(v) in v[-1,1] with w(v)C0,([-1,1]), where C0, is 
the Hölder class [19]. In fact, the properties of the functions K(u,v), z(v) and b(u) are 
quite natural to the diffraction problem (see their definitions in next section). Moreover, 
z(v)Lq([-1,1]), for any q<2 owing to its singularity while v is approaching to 1, and 
for p1 satisfying q-1+p-1=1, {-ln|u-v|/+K(u,v)}Lp([-1,1]). For fixed u, changing the 
integration variable as v=cos, [0,] and using the identity 2cos=(ei+e-i), (1) now 
can be written as a Fourier convolution integral over the interval [-,] and we can see 
that Generalized Parseval Equality (GPE) is valid for the considered functions and their 
Fourier coefficients, as has been proved in 10.5.3 and 12.10 of [24].

Below we use the orthonormal Chebyshev’s polynomials of the first kind with 
the following orthonormality relation (norm of orthogonal Chebyshev’s polynomials of 
the first kind is defined as ||Tn(x)||=(/p)1/2, where p=1 for n=0 and p=2 otherwise):
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with the Kronecker delta sn. The subsequent expansion is given in [13]:
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with 0 =(ln2)-1/2, n=|n|1/2 for n0. The properties of the functions z(v), b(u) and K(u,v) 
permit their respective expansions to the Fourier-Chebyshev series:
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In (4) zn are unknown coefficients and bn and ksn are Fourier-Chebyshev 
coefficients of the functions b(u) and K(u,v) respectively. Moreover, coefficients ksn

satisfy the following inequality [13, 15]:
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snn s k (5)

This means that ksn at the very least decays faster than ((ns)-3/2) and provides a 
basis for understanding how to build a system like (9) as follows below.

Regarding the discussion about GPE about (1) above, we can view (1) also as a 
Fourier-Chebyshev convolution integral and corresponding GPE is valid also between 
the functions in (1) and their Fourier-Chebyshev coefficients in (4). Therefore
substituting the right hand sides of series (4) into equation (1), we can change the order 
of integration and summation, and the orthogonal property (2) gives us the equalities of 
the Fourier-Chebyshev coefficients of the left and right hand sides of equation (1) as,

0,1, 2, ...





  2

n n ns s n
s 0

z b , nk z (6)

This is equivalent to (1) because of the completeness of orthonormal Chebyshev 
polynomials of the first kind. Infinite SLAE1 (6) is the final system of the entire domain 
Galerkin procedure [17]. As a simple scaling of unknowns in (6) by the factors in front 
of them evidently leads to a SLAE2, this may give, at first glance, the false impression 
of a well-conditioned AS for (6). However, before going any further, we have to 
understand the quality of the SLAE1 in (6). Such a system exhibits a behavior 
consisting of a linearly growing condition number which depends on the truncation 
number (see [23]). This is in accordance with the fact that, with regard to (5), the 
equations in the system in (6) is of order  2

n =|n|-1 with n. Therefore the order of the

norm of the inverse of the infinite matrix operator in (6) is (n) with n, as well as 
its condition number. Thus (6) is an ill conditioned system. The ARM scheme provides 
an analytical two sided preconditioning to equation systems such as (6) making it an 
SLAE2. In order to apply the corresponding ARM to (6), whose coefficients have the 
property in (5), we define the matrix-operators L, R, K, and H (diag: diagonal matrix) as 
follows:

0
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with hsn=nsksn, vector-columns z, b, y, g, with gn=n bn and
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Using the new unknowns yn=z n /n, and multiplying each nth equation of (6) by n, we 
obtain an infinite AS which has the following functional representation (I: identity 
operator):

2
( ) , ,I H y g y g l   (9)

We can prove that (9) is an SLAE2, i.e., H is a compact operator in l2. This 
means that we have constructed the (L,R) regularizing pair which solves the initial 
problem: to obtain an SLAE2 in l2. It is worth mentioning here that the regularization 
procedure defined via (7) and (8) is not the only one that exists for obtaining such an 
SLAE2 as in (9). Consider the diagonal matrix operator T= diag{(n)

2}. The predecessor 
of ARM, Semi-Inversion (SI) [15, 16, 18], reads as a line-wise regularization where
L=T and R=I. What is more, the very simple scaling (SS) mentioned above by the 
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choice of L=I and R=T can be considered a column-wise regularization option. 
Nevertheless, neither of these regularizations leading to a functional equation as in (9)
can produce a matrix system with the property,

   2
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 

 

    ns
n s

n s h (10)

which follows, in particular, from formulae (5) and (7). This is because the ARM 
performed by the (L,R) regularizing pair defined in (7) is native to (6) (whose 
coefficients have the property in (5)), leading to both line-wise and column-wise 
regularizations and, therefore, to a higher quality of well conditioning. Consequently, H
in (9) is evidently a compact operator (as all other operators emerging after the said 
regularization options), but much more than merely that: its coefficients are decaying 
much faster than necessary even compared to those of a Hilbert-Schmidt operator. 
When we compare the condition numbers of the algebraic systems obtained by the 
aforementioned regularization options, we find proof that the one utilized here is the 
best conditioned one amongst them (see below in the numerical results). 

One can prove (see [15]) that equations (1) and (9) are equivalent in the sense of 
a one to one correspondence between solutions for both equations (in the relevant 
functional spaces). By applying a truncation procedure to the SLAE2 as in (9), we are 
able to obtain a solution to both equations with, in principle, the requisite arbitrary 
accuracy as the condition numbers of such systems are bounded by increasing 
truncation numbers, contrary to the system in (6).

In the next sub-section we describe the path from the diffraction problem to the 
canonical problem just outlined, and construct the AS for a multi-strip system.

2.2. Steps Between The Diffraction Problem And The Canonical Integral Equation
After  parameterization of the integral equation (see their definitions in section 

2.1.), we arrive at 1
1 Z(v)(u,v)dv=B(u), u[-1,1], where we define the unknown 

function Z(v)=J((v))| (v)| (derivative vector of parameterization of order i: 
(i)(v)=(x(i)(v), y(i)(v))R2, | (v)| is the arc-length at v on S), the right hand side of the 
integral equation B(u)=-Ei((u)), and (u,v)=G((u),(v))=[-i/4]H0

(1)(k|(u)-(v)|). We 
can seek for Z(v) in the form of z(v) of (1) since the edge conditions are satisfied with 
that representation. Writing =u-v, one can show as in [15] that the local singular 
expansion of (u,v) by means of its Taylor series expansion in the vicinity ||=0 for N2
is  (u,v)=(2)-1ln||[1+ n=2

N An(u) n]+FN(u,v), where FNCN([-1,1][-1,1]) (for proof,

start with definition of (u,v) above, and resort to power series expansion of H0
(1)(z), in

e.g.[20]). Functions AnC(-1,1), do not depend on N, and A2(u)=-(k| (u)|/2)2 and 
A3(u)=-k2( (u) (u))/4 in particular, where  is scalar product in R2. Thus in (1), 
b(u)=-2B(u), K(u,v)=-2(u,v)+ln|u-v|/ when uv, and K(u,v)=-ln(k| (u)|)/, if u=v.

As stated before, G(q,p) is an infinitely smooth function when qp. The same is 
true for the interaction terms when we consider a multi-strip surface union. Thus, the 
final SLAE2 has the following configuration:

2
1

, , , 1, ...,j jm m j

N

m

y H y g y g l j N


     (11)
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Hjm are matrices calculated with the definitions in previous paragraph and with the 
algorithm given in the previous sub-section for self terms (i.e., j=m), where no 
difference occurs in the algorithm when calculating the interaction terms (i.e., jm) 
because they are infinitely smooth kernels. The unknown vectors are ym and the known 
right hand sides are gj and they are obtained for each strip as explained in the previous 
paragraph and previous sub-section. Let us now turn to the numerical results.

3. NUMERICAL RESULTS

This section includes the results of the numerical experiments done in order to 
(i) verify the physical relevance of the ARM approach to knife edge diffraction, and (ii) 
expand on the well-conditioned feature of the resulting SLAE2 obtained by said ARM 
approach.

We compared the results obtained using PM as implemented in [21] and found 
that the size of the AS for ARM is at least two times less than what PM requires for 
accurate enough results. The reason for this is set forth below in the discussion 
concerning Fig. 2 - right. Specifically, we present the current density results of a 10
and a 2 strip illuminated by a unit amplitude plane wave at normal incidence (Fig. 1-
left). We also compared our results to those of a multiple knife edge study presented in 
[7] concerning the total near field results of a 160 strip under plane wave incident at a 
five degrees deviation from strip surface’s normal direction. We obtained excellent 
agreement between the two, as can be seen in Fig. 1 - right.
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Figure 1: ARM verification using Point Matching (PM) for current densities (left). 
ARM verification using results of the method in [7], for total near field at f=3 GHz, and 

10 m in front of a 16m (160) strip (right)
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Figure 2: Calculation via ARM of BRCS scan starting from the tangential direction of a 
basic two strip knife edge model sited at various distances from each (left). Logarithmic 
plot of condition numbers of the algebraic systems illustrated in the previous Figures 1-

right, 2- left, and 3 (PM: point matching, ARM: others) (right).

Fig. 2 – left, illustrates the bistatic radar cross section (BRCS) results of a two 
strip model of l1=10, l2=20 under the same illumination as in Fig. 2. Strips are sited 
at three different distances from each other (d=2, 10, 100) and the physical 
relevance of the BRCS results (i.e., the greater the d, the more ripples) is ascertained at 
these three separate distances. Fig. 2 – right, depicts logarithmically the condition 
numbers (=||A||||A-1||) in l norm [11], “A” being the matrix of each AS used. 
Despite direct methods like PM,  of which is a linear function of system size [23],   of 
ARM-SLAE2 as in (9) tends toward its limit value (Fig. 2 -right), showing its 
qualitative property. Increasing the length of the strips as well as the presence of 
resonances in the multi-strip system leads to a greater limit value for  of ARM-SLAE2. 
According to [11], the greater the , the less accurate are the computer obtained 
solutions. But even when we consider the 160 long strip in Fig. 1 - right (1605) or 
the cases in Fig. 2 - right, a stabilized  103-104 detracts at most four significant 
figures (SF) in the calculations made in a 16 SF environment as in a 53 bit mantissa. 
This means that the round-off error for solving the AS is negligible compared to the 
truncation error for the infinite AS. The latter follows from experiences showing that 
the size “kl+(1020)” of the AS is sufficient to achieve an accuracy with relative error 
that is less than 0.1% for the current density, and is much less for the far field pattern. 

It is worth stating here that the requirement for the truncation number obtained 
above is characteristically similar to that of the analytical series solution for the 
scattering by the canonical objects, e.g., the circle [21]. Hence, in conjunction with the 
mathematical rigor of ARM, the above-mentioned property can also be regarded as a 
feature that results from the capability of the ARM approach to extend the set of 
canonical problems that can be solved analytically.

Fig. 3 illustrates a knife edge model on the ground illuminated at the HF band. 
The illumination utilized in the rigorous simulation is a unit amplitude plane wave 
impinging on strips with an angle of fifteen degrees to the strip surface’s normal axis. 
The amplitude of the total near field (Fig. 3 above) is depicted, as is the path loss related 
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to this near field amplitude distribution (Fig. 3 below). The ground is assumed to be 
perfectly conductive and the image principle (see [7]) allows a system size reduction to 
half because Chebyshev polynomials are symmetrical, as in Tn(x)= (-1)nTn(-x), leading 
to an essential reduction in computational time. A finite-loss ground can also be 
modeled via our method by simply replacing the Green function of free space with the 
Green function of lossy dielectric half space (e.g., [22]).

Figure 3: An HF band simulation: Near field amplitudes (|NF|) (above) and path loss 
(20log|NF|) (3 samples/) at a 5025 frame (below), including four strips on a 

ground horizontally sited from origin at 14, 16, 21, 26 with heights l=2, 5, 10, 
3 respectively (shown by grey and black lines respectively). The incident field is a unit 

amplitude plane TM wave propagating along vector k= (cos(-15o), sin(-15o)) from 
origin.

Table
Stabilized condition numbers of the matrices of SLAE2 obtained by the regularization 

types mentioned in the discussion following equation(9) illustrated in the previous 
Figures 1 - right, 2- left, and 3.

Figure 2- leftRegularization 
Type

Figure 1 -
right d=2 d=10 d=100

Figure 3

ARM 1604.694 1978.984 1634.348 2362.043 943.672
SS 1725.046 2259.999 1685.013 2373.853 1964.725
SI 1922.423 2725.061 2072.353 2688.005 1314.535

Finally, in Table 1, we compared the stabilized SLAE2 matrix condition 
numbers from the cases considered in Figures 1 - right, 2 - left, and 3, which were 
obtained via the matrices resulting from the application of the regularization types 
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mentioned in the discussion following equation (9). One clearly sees that the ARM 
application proposed produces the best conditioned SLAE2 amongst the various 
regularization options considered. This is because the corresponding regularizing pair 
(7) is constructed inherently from the properties in (5) of the SLAE1 obtained by the 
OPM in (6), and thus, has the quality in (10).

4. CONCLUDING REMARKS
In this paper we focus on ARM as a tool for the analysis of knife edge 

diffraction problems. ARM is the procedure for constructing, with mathematical 
equivalence and physical relevance to the original BVP, the proper (L,R) regularizing 
operator pair, in order to reduce the BVP to an SLAE2 in space l2 (which is the most 
proximate candidate to represent the space of numbers and operations in a computer). 
The theoretical and numerical investigations of the convergence properties as well as 
the behavior of the condition numbers of the obtained ARM-SLAE2 provide an insight 
into the excellent qualitative properties of ARM. It is a full-wave, mathematically 
rigorous approach that is superior to traditional full-wave methods such as PM and, at 
the same time, it is capable of extending the set of canonical problems that can be 
solved analytically. The comparisons made with other methods’ obtained results show 
that ARM is relevant to the physical nature of the problems modeled by knife edges. 
Additional assumptions in modeling the areas through which the radio waves propagate 
(i.e., whether the ground is perfectly conductive, lossy or of an impedance type) can 
modify the Green’s function used. Futhermore, additional requirements for problems at 
higher frequencies can be incorporated via the use of fast calculation techniques based 
on the discrete Chebyshev transform and the appropriate iterative linear solvers. Finally, 
we intuitively state that the mathematically rigorous and numerically efficient ARM 
approach embodies great potential for further research on 2D radio wave propagation 
models.
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