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Abstract- An assumed stress 8-node hybrid finite element is presented for buckling 
analysis. The formulation is based on Hellinger-Reissner variational principle. The 
element has 24 membrane degrees of freedom and 24 bending degrees of freedom. The 
stress stiffness matrix is derived by using the Green-Lagrange strains. The element 
performance is assessed by comparison with numerical examples.
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1. INTRODUCTION

Buckling loads have detrimental influence on the performance, operation and 
maintenance of structures in field of engineering, i.e. in civil, mechanical, aerospace, 
automobile and marine structural engineering. Buckling analysis is carried out to 
calculate the loading value at which the structure buckles. Theoretical solutions can 
only be available on some simple structures under simple loading and with simple 
boundary conditions. Finite element method has been considered as the most effective 
approach in buckling analysis and used  extensively. Fafard et. al. [1] presented a 
general two dimensional thin plate/shell theory for the study of elastic stability. M. 
Talbot and G. Dhatt [2] presented discrete Kirchhoff elements for shell analysis with 
large geometrical non-linearities and bifurcations. Rengarajan et. al. [3] developed a 
shell finite element for linear stress, buckling and  free vibration analyses, Li et. al. [4] 
presented a shell element by a special transformation solid element for buckling 
analysis of thin-walled structures. Kim and Kim [5] developed practical design 
equations estimating the buckling strength of the cylindrical shell and tank subjected to 
axially compressive loads by using the ABAQUS, a commercial finite element analysis 
program.

The presented paper places emphasis on buckling analysis of structures by using 
finite element method. An assumed stress finite element based on Hellinger-Reissner 
functional is developed. The efficiency, accuracy and versatility of the proposed 
element are demonstrated by some numerical examples.

2. ELEMENT FORMULATION
Since Pian [6] first established the assumed stress finite element model and derived 

the corresponding element stiffness matrix, the hybrid stress model has been shown 
highly accurate, and easy to fulfill the compatibility condition of the finite element 
method. The element developed in this paper is based on Hellinger-Reissner variational 
principle. The Hellinger-Reissner functional can be written as

         T T
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where {} is the stress vector, [S] is the material stiffness matrix relating strains, {}, to 
stress ({}=[S]{}), [D] is the differential operator matrix corresponding to the linear 
strain-displacement relations ({}=[D]{u}) and V is the volume of  structure.
The approximation for stress and displacements can now be incorporated in the 
functional. The stress field is described in the interior of the element as

{}=[P]{}    (2)
and a compatible displacement field is described by

{u}=[N]{q}    (3)
where [P] and [N] are matrices of stress and displacement interpolation functions, 
respectively, and {} and {q} are the unknown stress and nodal displacement 
parameters, respectively. Intra-element equilibrating stresses and compatible (boundary 
or intra-element) displacements are independently interpolated. Since stresses are 
independent from element to element, the stress parameters are eliminated at the 
element level and a conventional stiffness matrix results. This leaves only the nodal 
displacement parameters to be assembled into the global system of equations. 
Therefore, use of hybrid-stress versus assumed-displacement elements can be made 
transparent to general-purpose program users.
Substituting the stress and displacement approximations Eq. (2), Eq. (3) in the 
functional Eq.(1)

         T T
RH

1
G q H

2
         (4)

where

      T

V

H P S P dV  (5.a)

       T
G P D N dV  (5.b)

The elements of any row of the matrix [G] are the forces at the nodes when the stress 
in the element is represented by one column of [P]. The elements in any row of [G] 
represent a set of self-equilibrating forces.

The form of Eq (5.a) and Eq (5.b) is directly amenable to numerical integration (i.e. 
Gauss quadrature). In principle, integration rules should be chosen which integrate all 
terms in [H] and [G] exactly. Arbitrary reduction of the integration order in [H] can lead 
to poor conditioning or singularity in [H] so that [H]-1 will not exist, and reduction in 
[G] can lead to spurious zero energy modes since [G] controls element stiffness rank.

Now imposing stationary conditions on the functional with respect to the stress 
parameters {} gives

       1
H G  q

     (6)

Substitution of {} in Eq. (4), the functional reduces to 

             T T 1 T
RH

1 1
q G H G q q K q

2 2
      (7)

where

       T 1
K G H G

    (8)
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is recognized as a stiffness matrix.

The solution of the system yields the unknown nodal displacements {q}. After {q} is 
determined, element stresses or internal forces can be recovered by use of Eq. (6) and 
Eq. (2). Thus

       1
P H G q

     (9)

In modelling structures using displacement based or hybrid elements, body forces 
applied to the elements are replaced by equivalent nodal forces. With this replacement, 
the stiffness and stress matrices in element formulations need only to be considered for 
forces applied at the nodes.

The stress stiffness matrix is derived by using the Green-Lagrange strains which 
correspond to defining the strain of a line segment by the equation 

2*1 ds
1

2 ds

  
        

 (10)

where ds and ds* are respectively the initial and final lengths of the line segment.
The nonlinear terms are retained only for the membrane strains. The membrane 

strains are written as

     L NL      (11)

where the linear part is given by

 
xL x

L yL y

xyL y x

u,

v,

u, v,

   
   

      
       

  (12)

and the nonlinear part is given by
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2
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        

  

  (13)

The bending strains are computed using the changes in curvature by

 
y,xx

y x,y

xy y,y x,x

   
   

       
         

 (14)

The transverse shear strains are given by
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  y xxz

yz x y

w,

w,

                
  (15)

The generalized Hellinger-Reissner functional including the nonlinear strains can be 
written as

             TT T
RH o NL

V V V

1
D u dV S dV dV

2
             (16)

where  o is the prescribed prebuckling stress state. Substituting the stress and 

displacement approximations Eq. (5.a), Eq. (5.b) in the functional

              T T T
RH

1 1
G q H q K q

2 2          (17)

and stress stiffness matrix is given by

         T T

A

K N N N N dA      (18)

respectively.
Here N  is obtained from shape functions  N  by appropriate differentiation and 

ordering of terms.

 

/ x 0 0 0 0 0

/ y 0 0 0 0 0

0 / x 0 0 0 0
N

0 / y 0 0 0 0

0 0 / x 0 0 0

0 0 / y 0 0 0

  
   
  

     
  
 

  

 (19)

The matrix   , which corresponds to the pre-buckling stress state, consists of 

membrane stress resultants which are evaluated from a linear static stress analysis. It is 
given by

 
0 0

0 0

0 0

 
    
  

  (20)

where

x xy

xy y

N N

N N

 
   

  
  (21)

3. FINITE ELEMENT FORMULATION

The geometry and node numbering for the element is shown in Fig. 1. At each node 
of this proposed finite element the unknown displacements are translations u, v, w and 
rotations x, y, z.
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Fig.1 Geometry and node numbering

The stress field and the body forces have the following components

   T
x y xy x y x y xyN , N , N ,Q ,Q ,M , M , M    (22)

   T
x y zF f , f , f   (23)

In practice, initial polynomials are usually assumed for the stresses after which the 
equilibrium equations are applied to these polynomials yielding relations between the 
’s and ultimately the final form of [P]. The equilibrium equations which are applied to 
stress field polynomials yielding relations between the ’s is given in Eq. (24).

xyx
NN
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x y


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0

y x

 
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  (24)
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y x
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  

 
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0
x y


 

 
The stress field should be selected in such a manner that no spurious zero-energy 

mode is produced. A spurious zero-energy mode is produced when the product of a 
selected stress term and the strains that are derived from the displacement functions 
produces zero strain energy under a particular deformational displacement field. The 
number of stress parameters, which is the number of columns in [P], must be at least 
equal to the number of degrees of freedom of the element less the number of degrees of 
freedom necessary to prevent rigid body motion Darılmaz and Kumbasar [7], Darılmaz 
[8]. Spurious zero-energy modes generally occur for regular geometries such as 
rectangular planar elements and brick solid elements and disappear for irregular 
geometries, Pian and Chen  [9].

The membrane part of the element has 23  degrees of freedom and the following 
equilibrating stress resultant field is considered for this part.
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2 2 3 2 2 3 4
x 1 2 3 4 5 6 7 8 9 10 11

3 2 2 3
12 13 14

N x y x xy y x x y xy y x

x y x y xy

                   

    

2 2 3 2 2 3
y 15 16 17 18 19 4 20 21 7 8

3 2 2 3 4
22 11 12 13

N x y x xy y x x y 3 xy y / 3

x y 6 x y xy y / 6

                  

      
2 2 3 2 2

xy 23 17 2 19 4 5 21 7 8

3 4 3 2 2 3
9 22 11 12 13

N x y x / 2 2 xy y / 2 x / 3 3 x y xy

y / 3 x / 4 4 x y 3 x y / 2 2 xy / 3

           

       
 (25)

The bending part has also 27 degrees of freedom and the following equilibrating 
stress resultant field is considered for this part.

2 2 3 2 2 3
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    

The Reissner-Mindlin plate theory is used for the bending part. The bending part of 
the element requires only C0 continuity and takes into account the effects of transverse 
shear deformations by assuming constant transverse shear strains through the thickness 
of the plate. A static form factor k=5/6 is included in the transverse shear strain energy 
that accounts for a parabolic distribution of shear stress over a rectangular section.

In this study, since the stress field exactly satisfies the  equilibrium equations given 
in Eq.(24) the evaluation of [G] matrix is carried out along the boundary of elements. 
The components of stress resultant field along the boundary are given in Eq. (27)
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Fig.2 Components of stress resultants along the boundary of an element
and defined as in Eq. (28)
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        s T T P          (28.a)
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         

 
  

(28.b)

here [T] is the stress resultant transformation matrix.
The displacement components along the boundary is also given in Eq. (29).

        s u uu T u T N q      (29.a)
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          

    (29.b)

here [Tu] is the displacement transformation matrix.
Substitution of Eq.(28.a) and Eq.(29.a) into Eq. (5.b) , yields

               
n

T TT T
u u i

i 1S

G P T T N  dS P T T N J W 


   (30)

The translational and rotational components on the element boundary are defined with 
respect to nodal values as in Eq. (31).

3 3

i i i zi
i 1 i 1

u N u N cos 
 
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 
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3

i i
i 1
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

    (31)
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x i xi
i 1
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
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3

y i yi
i 1

N  


  
where

 1N 1 / 2      2
2N 1     3N 1 / 2          (32.a)
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 2
1N 1 L      2

2N 1 L       2
3N 1 L          (32.b)

are the shape functions in coordinates (,).
It is worth mentioning here that the true nodal normal rotations are given by 

1/2(v/x-u/y) evaluated at the nodes. Hence the terms zi are not true nodal 
rotations. 

Advantages of including rotational degrees of freedom in a membrane element are as 
follows. Major finite element programs allow six degrees of freedom per node. 
Accordingly, since rotational freedoms are already available in the program structure for 
frame elements. Including normal rotation as a nodal degree of freedom in flat shell 
elements is a neat way of avoiding the zero-stiffness condition that arises when all shell 
elements at a node happen to be coplanar. Finally, element performance may improve. 

The differentiation of the work done by the distributed load with respect to the nodal 
displacements gives the load matrix 

     Te

p
A

F N F dA    (33)

The distributed load {F} can be expressed in terms of nodal load values {F}e as in Eq. 
(34)

   e
pF [N ] F     (34)

Substitution of Eq. (34) into Eq. (33) , yields

         
4 4

T Te e e
p i j pp

i 1 i 1A

F N [N ] F dA W W N [N ] J F
 

    (35)

4. NUMERICAL EXAMPLES

4.1. Buckling load of a beam

The buckling load of the beam having a channel section is determined. The material 
properties are, elasticity modulus E=2x108kN/m2, Poisson’s ratio =0.3.  Dimensional 
and geometrical properties of the beam are depicted in Fig.3.

5mm

50

250
P

4.0m

X,u

Z,w

Y,v

Z,w

v = w =

1

Boundary conditions
 x z= =0 at

=0 atu = v = w =  x  z=

2

1

2

Fig.3 Dimensional and geometrical properties of the beam

Comparisons of the results of the ANSYS (shell93) and proposed element with the 
theoretical solution are shown in Table 1. From Table 1, the agreement is seen to be 
good. Buckling mode of the beam is given Fig. 4.
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Table.1 Elastic buckling load of the beam (kN)

Buckling load Error (%) Number of Elements
This study 146.2 4.2 8X48
ANSYS [11] 147.1 4.8 8X48
Theoretical 140.3 --- ---

Fig.4 Buckling mode of the beam under axial load.

4.2 Buckling of a square plate

The elastic stability of a square plate structure subjected to inplane edge load is 
analyzed. Material properties of the plate are taken as elasticity modulus E=3x107

kN/m2, Poisson’s ratio =0.3.  Its geometrical characteristics are shown in Fig.5.

4 m
4 m

N

N

0.25m

Fig.5 Dimensional and geometrical properties of the plate
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Table .2 Elastic buckling load of the square plate (kN)

Mode 
Number

This study
Timoshenko 
and Gere [9]

Difference

(%)

Buckling Mode 
Shape

1 421183 423661 0.58

2 659232 661970 0.41

3 1160627 1176836 1.38

4 1789543 1913094 6.46

Solutions for first four buckling modes are compared with reference solutions and close 
agreements are obtained. Results are given in Table.2.

4.3. Folded plate structure

The elastic stability of a folded plate structure subjected to distributed load is 
analyzed. Material properties of the plate are taken as elasticity modulus E=2x107

kN/m2, Poisson’s ratio =0.2. Its geometrical and material characteristics are shown in 
Fig.6.

7E=2x10
t=0.01m

p=1.0kN/m

1.5m

1.5m
=0.2

1.0m

2kN/m

2

Fig.6 Folded plate structure
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Solution is compared with ANSYS solution and a close agreement is obtained. Results 
are given in Table.3. The first two buckling modes are given in Fig. 7.

Table.3 Elastic buckling load factors of the folded plate structure

Buckling load 
factors

Mode 
1

Mode 
2

Number of 
Elements

Approx. Run Time
(sec)

This study 7.483 24.082 8X24 8
ANSYS [11] 7.474 23.895 8X24 9
ANSYS [11] 7.481 24.037 16X48 29

Mode 1 Mode 2

Fig. 7 Buckling modes of folded plate structure

4.4. Cylindrical Shell

The elastic stability of a cylindrical shell subjected to distributed external load is 
analyzed. Its geometric characteristics are shown in Fig.8  with radius R= 1 m, height 
h=2 m, and thickness t = 5 mm. As a boundary condition bottom of cylinder is fixed and 
top of cylinder is free. It is made of steel with the elasticity modulus E =2.1x108 kN/m2

and the Poisson’s ratio =0.3. The computed elastic bifurcation buckling load obtained 
by using the presented element is compared with ANSYS solution and given in Table.4.

2.0m

2.0m

0.005m

free

fixed

P

Fig.8 Cylindrical shell and its buckling mode under external load.

During the analysis, 16 elements are used along the circumference and height of 
cylinder.

Table.4 Elastic buckling load of a cylindrical shell ( kN)
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Buckling load Number of Elements Approx. Run Time 
(sec)

This study 8523.2 16X16 11
ANSYS [11] 8412.7 16X16 13

Like previous examples, for this example presented element solution is in a good 
agreement with reference solution.

5. CONCLUSIONS

The development of an assumed stress hybrid element is presented for buckling 
analysis. The element is developed through the combination of the membrane element 
with a drilling degree of freedom and the Reissner-Mindlin plate bending element. 
Thus, the combined element element possesses six d.o.f  per node, which is very 
conveniently used in combination with other six d.o.f  per node elements for giving 
more accurate solutions. On the basis of the representative numerical examples, the 
good accuracy of the proposed element for buckling analysis of structures has been 
demonstrated. From the numerical results of previous section, the accuracy of the 
element is satisfactory and can be implemented easily to analyze elastic stability 
problems.
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