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Abstract-In this paper, we have developed a new method called Generalized Taylor 
collocation method (GTCM), which is based on the Taylor collocation method, to give 
approximate solution of linear fractional differential equations with variable 
coefficients. Using the collocation points, this method transforms fractional differential 
equation to a matrix equation which corresponds to a system of linear algebraic 
equations with unknown Generalized Taylor coefficients. Generally, the method is 
based on computing the Generalized Taylor coefficients by means of the collocation 
points. This method does not require any intensive computation. Moreover, It is easy to 
write computer codes in any symbolic language. Hence, the proposed method can be 
used as effective alternative method for obtaining analytic and approximate solutions 
for fractional differential equations. The effectiveness of the proposed method is 
illustrated with some examples. The results show that the method is very effective and 
convenient in predicting the solutions of such problems.

Keywords- Fractional differential equation, Taylor collocation method, Adomian 
decomposition method, Homotopy perturbation method, Variational iteration method, 
Fractional differential transformation method

1. INTRODUCTION

Interest in the concept of differentiation and integration to non–integer order has 
existed since the development of the classical calculus [1]. By implication, 
mathematical modeling of many physical systems are governed by linear and nonlinear 
fractional differential equations in various applications in fluid mechanics, 
viscoelasticity, chemistry, physics, biology and engineering.

Since many fractional differential equations are nonlinear and do not have exact 
analytical solutions, various numerical and analytic methods have been used to solve 
these equations. Recently, Adomian decomposition method (ADM) [2-5], variational 
iteration method [2,6,7], homotopy perturbation method [8-10], homotopy analysis 
method [11-24-25], fractional differential transformation (FDTM) [12-14] and 
fractional difference method [2] have been used to obtain analytical approximate 
solutions of fractional differential equations. 

In this paper, we aim to present a new generalization of the Taylor collocation 
method that will extend the application of the method to linear fractional differential 
equations with variable coefficients: 

*
0

( ) ( ) ( ),    , 1
m

k
k i i i

k

P x D y x f x a x b n m n 


      (1.1)



Y. Keskin, O. Karaoğlu, S. Servi and G. Oturanç618

with initial conditions
bca  niayD i

i  ;1,,1,0,)(*  (1.2)

which ( )kP x  and ( )f x are functions defined on a x b  , the real coefficient i  is a 

appropriate constant.
The new technique will be named as Generalized Taylor collocation method 

(GTCM) and is based on  Taylor collocation method [15,16,23],  generalized  Taylor's  
formula  [17]  and Caputo fractional derivative [18]. Using the collocation points, the 
GTCM transforms the given fractional differential equation and initial conditions to 
matrix equation with (including) unknown Generalized Taylor coefficients. By means 
of the obtained matrix equations and Maple 13 programme, the Generalized Taylor 
coefficients can be computed.

2. BASIC DEFINITIONS

In this section, we present some basic definitions and important properties of 
fractional calculus [2,3,5,6,8-10,13,17,18].
Definition 1. A real function f(x), 0x , is said to be in the space C , R  if there 

exists a real number p , such that )()( 1 xfxxf p , where ),0()(1 Cxf , and it is 

said to be in the space nC  iff Cf n )( , Nn .

Definition 2. The fractional integral operator a xJ   (Riemann–Liouville operator) of 

order 0  of a function Cf  , 1 , is defined by
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Definition 3. A fractional derivative of arbitrary order a xD  with mm  1 , Nm , 

can be defined through fractional integration of order m  as follows:
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0 ( ) ( )a xD f x f x
Equations (2.1) and (2.2) are known as the Riemann–Liouville integral and the 
Riemann–Liouville derivative for 0a .
Definition 4. The fractional derivative of f(x) in the Caputo sense is defined as follows:
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Some basic properties of the fractional operator are listed below [6,11,12,13,14]:
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Theorem 1. [20] (Generalized Taylor formula) Suppose that * ( ) ( , ]k
a D f x C a b   for 

1,...,1,0  nk , where 10  . Then
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where

**** ...DDDDn    n times.

DESCRIPTION OF THE METHOD

In this section, we use a Taylor collocation method to solve fractional 
differential equations. This method is very useful and can be used to solve many 
important fractional differential equations.  The basic ideas of the Taylor collocation 
method [15,16,23] is to develop and apply to the m th-order linear fractional 
differential equation with variable coefficients. We adopt Caputo’s definition, which is 
a modification of the Riemann–Liouville definition and has the advantage of dealing 
properly with initial value problems, for the concept of the fractional derivative.
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In the first, we consider Eq.(1.1) and Eq.(1.2)
and we assume that the solution of this equation can be expressed as a truncated 
Generalized Taylor series
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Let us consider the m th-order fractional differential equation with variable 
coefficients (1.1) and find the truncated series expansions of each term in expression 
(1.1) at x=c and their matrix representations. We first consider the desired solutions 

)(xy of (1.1) defined by a truncated Generalized Taylor series (3.1). Then can be written 
matrix form
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Generalized Taylor collocation method is based on computing the Generalized Taylor 
coefficients by means of the collocation points are thereby finding the matrix A 
containing the unknown Generalized Taylor coefficients.
Firstly, we substitute the collocation points defined by

bxaxNi
N

ab
iax Ni 


 ,  ,   ,,2,1,0  , 0    (3.3)

into (3.1) matrix representation to obtain 
  Ni;AMXxy ii ,...,1,0)( 0  (3.4)

and
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(3.5)

Thus, we obtain a new matrix form
(0)

0 ,Y CM A  (3.6)

where



The Approximate Solution of High-Order Linear Fractional 
Differential Equations

621

 (0)
0 1 2( ) ( ) ( ) ( )

T

NY y x y x y x y x 

and

 

2
0 0 0

2
1 1 1

0 1

2

( 1) ( 1)

1 ( ) ( ) ( )

1 ( ) ( ) ( )

1 ( ) ( ) ( )

N

N
T

N

N
N N N N x N

x c x c x c

x c x c x c
C X X X

x c x c x c

  

  

  
 

   
     
 
 

    






    



Similarly, the matrix representation of the functions * ( )kD y x  becomes
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Then we can write the system (1.1) in the matrix form
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or briefly
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Then we can write the matrix (3.7) and (3.9) 

FACMP
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k
kk 








0

          (3.10)

Now let us form the matrix representation of the conditions. Using the conditions (1.2) 
and (3.7), we have

0[ ( )] , 0,1, ,y x XM A k m N  

into equation ax 
2

0 0[ ( )] 1 ( ) ( ) ( )Ny a a c a c a c M A HM A        

If h=a-c, H matrix
  NhhhH 21

Then we can write * ( )kD y x  for x=a, in the matrix form

* *( ) ( )k k
kx a

D y x D y a HM A 


       (3.11)

Substituting the matrix representations (3.11) into the (1.2), we obtain 
1,...,0  niAHM ii 

Let us define iU  as

 0 1 , 0,1, , 1i i i i iNU HM u u u i n     (3.12)

Thus, the matrix forms of conditions (1.2) become 
1,,1,0,  niAU ii  (3.13)

3. METHOD OF SOLUTION

Let us consider the fundamental matrix equation (3.10) corresponding to the 
m th-order linear fractional differential equation with variable coefficients (1.1). We 

can write Eq. (3.10) in the form
FWA  (4.1)

where
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The augmented matrix of (4.1) becomes
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We now consider the matrix equations (3.13) corresponding to conditions (1.2). Then 
the augmented matrix of (3.13) becomes 

   iiNiiii uuuU  ;; 10  (4.4)

Consequently, to find the unknown Generalized Taylor coefficients 

* ( )kD y c , mk ,,1,0    related with the approximate solution of the problem consisting 

of (1.1) and conditions (1.2), by replacing the m row matrix (4.4) by the last m rows of 
augmented matrix (4.3) ,we have new augmented matrix
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If *det 0W  , we can write equation (4.5) as 

  1* *A W F




And the matrix A is uniquely determined. Thus, the m th-order linear fractional 
differential equation (1.1) with variable coefficients under conditions (1.2) has a unique 
solution which is given by the truncated generalized Taylor solution
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If  we set 0iju   and 0i   in the matrix * *;W F   , we can obtain the general solution 

of equation (1.1). If det 0W   in the matrix 0;W M F , we can obtain the particular 

solution of equation (1.1).  
Since the obtained generalized Taylor series solution is an approximate solution of 
fractional differential equation, it must be satisfied approximately; i.e, for , 0,1,2,...ix i 
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or
( ) 10 ( j positive integer).j

iE x 

If max 10 j  (j, any positive integer) is prescribed, then the truncation limit N is 

increased until the difference ( )iE x  at each of the points ix  becomes smaller than the 

prescribed10 j . The results obtained for N = 4(4)12 using the Generalized Taylor 
collocation method discussed in section 2 are shown in table 1. For the convergence 
criteria and error estimates of solutions, see [19,20].

4. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the method, we consider here some linear 
fractional differential equations, some of which have been considered by other methods.
Example 1: Consider the Bagley–Torvik equation that governs the motion of a rigid 
plate immersed in a Newtonian fluid [21]

2 3/ 2( ) ( ) ( ) ( )
0 * 1 * 2

a D y x a D y x a y x f x  

we consider the case ( ) ( 1), 1, 1
2 0 1

f x a x a a    and 1
2

a   with the following initial 

conditions 
(0) 1, (0) 1.y y 

Approximate the solution ( )y x  by Generalized Taylor series 
8
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where  =1/2.
Fundamental  matrix relation of this equation is

( )
4 3 0

CM CM CM A F  

and collocation points
1 2

0, , , 1
0 1 2 33 3

x x x x    .

The new augmented matrix of example 1 becomes
1 0 0 1 1

1 0 0 0 1

0 1 0 0 0

0 0 1 0 1
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Finally, we find the fourth order approximation solution as
( ) 1y x x 

Numerical results will not be presented since the exact solution is evaluated.
Example 2: Consider the problem [22]

* ( ) ( ), 1 2D y x y x    
with initial conditions

(0) 0, (0) 0y y 

which is known to have the exact solution ( )E x
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In the interval 0 1x  , approximate the solution ( )y x  by Generalized Taylor series 
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,0 876543210  xxxxxxxxx .

The new augmented matrix of example 2 becomes





































0;000000100

0;000000010

1;000000001

0;099279.02119.041236.071792.00873.13717.1625.089201.01

0;055795.01326.028677.055319.092282.02659.15.079782.01

0;026735.0073086.018154.040091.076127.01728.1375.069096.01

0;0095656.0031922.009663.02594.05954.00940.125.056415.01

0;0016723.00078719.0033569.012666.040672.00332.1125.039891.01

0;000001001

];[ ** FW

Thus, the approximate solution is

4)2/7(3

)2/5(2)2/3()2/1(

46121.093338.01656.1

090682.048018.081043.098753.01284.11)(

xxx

xxxxxxy





Comparison of numerical result with the exact solution is shown in figure 1.
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Figure 1. The comparison of the GTCM approximation and the exact solution ( )E x  in the interval 

0 1x  .

Table 1. Error analysis of Example 2 for the x value
Present Method (c=0)x Exact 

Solution N=4 Error N=8 Error N=12 Error
0 1.00000000 1.00000000 0 1.00000000 0 1.00000000 0
0.2 0.93403621 0.93587485 0.00183864 0.93403524 0.97009E-6 0.93403617 0.44805E-7
0.4 0.82005638 0.82232699 0.00227061 0.82005506 0.13247E-5 0.82005632 0.60316E-7
0.6 0.68452989 0.67881003 0.00571985 0.68452840 0.14884E-5 0.68452982 0.67627E-7
0.8 0.54041695 0.51226600 0.02815094 0.54041451 0.24344E-5 0.54041688 0.69751E-7
1.0 0.39662936 0.32670703 0.06992232 0.39660815 0.00002 0.39662929 0.6657E-7

Examples 3:
We consider the composite fractional oscillation equation [2,12]

2
* *( ) ( ) ( ) 8, 0 1, 0 2D y x AD y x By x x       

with the initial conditions
(0) 0, (0) 0y y 

Taking 1, 1, 0.5, 1.5, 16A B N        and using GTCM. Then, Fundamental 
matrix relation

4 3 0( )CM CM CM A F  
and ( )y x  is evaluated as

82/1572/1362/11

52/942/732/52

015014.0072321.0105271.0081857.0536680.0959356.0

011534.1727149.0251940.0615105.0320610.1406151.24)(

xxxxxx

xxxxxxxxy





Numerical results with comparison to Ref. [2, 12] are given in Table 2.
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Table 2. The comparison of the GTCM with Adomian decompositon method, fractional differential 
transform method and the exact solution in the interval 0 1x  .

β=1.5
x

yADM YFDTM yGTCM yExact

0.0 0.000000 0.000000 0.000000 0.000000

0.1 0.036478 0.033507 0.033507 0.033507

0.2 0.140640 0.125221 0.125221 0.125221

0.3 0.307485 0.267609 0.267609 0.267609

0.4 0.533284 0.455435 0.455435 0.455435

0.5 0.814757 0.684335 0.684335 0.684335

0.6 1.148840 0.950393 0.950392 0.950392

0.7 1.532571 1.249959 1.249959 1.249959

0.8 1.963033 1.579557 1.579557 1.579557

0.9 2.437331 1.935832 1.935832 1.935832

1.0 2.952567 2.315526 2.315526 2.315526

Comparison of numerical result with the exact solution  are showed in figure 2

Figure 2. The comparison of the GTCM approximation and the exact solution [2] in the interval 
0 1x  .
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6. CONCLUSION

In general, it is difficult to find the exact solutions of fractional differential 
equations. So, it is needed to approximate solution methods. In this study, a new 
generalization of Taylor collocation method is presented for the numerical solutions of 
linear fractional equations. Mentioned method transforms linear differential equations 
into a algebraically system which is dependent on collocation points. It is easy to write 
pc codes which are related to obtained system for necessary computation.

The examples which have exact solutions have been used to show the efficiency 
of results of method. Graphics and numerical results show that this method is extremely 
effective and practical for this sort of approximate solutions of differential equations.   
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