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Abstract- Rock rigidity may be experienced in a wide range depending on several 
factors, and different methods can be used to consider their load-deformation behaviors. 
In this context, dilatometer tests (DTs) can be applied to obtain the modulus of elasticity 
of rock masses; therefore, it is possible to evaluate in-situ stress-strain behavior of rock 
masses realistically. Nevertheless, the application of this test is expensive as well as 
time-consuming, and necessitates mobilization of the equipment to construction site by 
trucks. The aim of this study is to simulate the load-deformation curve obtained of DT 
by neural networks (NNs). Therefore, the dilatometer test can be modeled as well as 
synthetic simulation of the test enables analyzers to characterize the material behavior. 
In order to investigate this, 50 different stress-deformation curves are obtained from 
DTs conducted on limestone formation underlying a dam (Dim dam) construction site 
in the Southern part of Turkey. The developed database by the curves was used for 
training and testing of the NN models. The results revealed that NN technique is quite 
successful for modeling the stress-deformation behavior of specific rocks based on DT 
results. It is therefore possible with the help of this alternative tool developed for the 
simulation of DT i) to model DT numerically, ii) to simulate the stress-strain behavior 
successfully, iii) to calculate the modulus of deformation efficiently, iv) to generate 
additional DT data synthetically, v) to develop material model alternatively, and vi) to 
make assumptions on the characterization of the rock mass behavior using previous 
information gathered by DTs.. 
Key Words- Stress-deformation curve, neural networks, dilatometer test, simulation.

1. INTRODUCTION

Foundations on problematic rocks and should a) possess high bearing capacities 
for carrying the infrastructure as well as b) rotate and/or displace below a predefined 
criteria, which is related with the type of the foundation. Analogous principles are valid 
for several engineering designs such as tunnels and slope retaining structures. 
Therefore, viable structures can be constructed solely considering these basic 
engineering principles. Stress-strain calculation of a structure requires unique 
information on the rigidity of the material such as modulus of deformation, which is the 
fundamental parameter for the characterization of the deformability.

Investigation of the studies in the literature led to the conclusion that majority of 
the studies concern the use of flat dilatometer, which is particularly useful for sands, 
silts and clays, where the grains are small compared to the membrane diameter [1, 2]. 
Essentially, comparisons of DT with other in-situ tests have attracted attention of a 
number of researchers. Iwasaki et al. [3] have compared dilatometer test results with 
laboratory test findings. The authors mentioned that the undrained strength and the 
constrained modulus by Marchetti’s methods [4] agree with the triaxial and oedometer 
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test findings. Larsson and Åhnberg [5] have reported the inconsistencies of a number of 
field tests, including DT. The authors have indicated the various effects of 
overconsolidation on the field vane, cone penetration and dilatometer test results. Apart 
from these, standard and seismic dilatometers can be used for evaluation of liquefaction 
potential of sand layers [6-9]. The DMT is effective for the settlement analysis of 
compacted fills [10] and shallow foundations [11]; also for determination of 
consolidation characteristics [12]. Evaluation of dilatometer tests and modeling related 
with the in-situ measurements has been in the research area of numerous engineers. In 
this context, Ito et al. [13] have developed a new method for the evaluation of 
dilatometer measurements. Circumferential deformation of the boreholes is utilized for 
the determination of borehole pressures. The re-opening pressure is useful for the 
determination of maximum horizontal stress. Gokceoglu et al. [14, 15] have developed 
empirical equation and neuro-fuzzy modeling using dilatometer test results on rock 
masses. Sonmez et al. [16] developed some empirical equations for estimation of 
deformation modulus of both intact rocks and rock masses using both dilatometer and 
plate loading test results. Palmström and Singh [17] have compared the methodologies 
for the determination of deformation modulus of rock masses, and made an adjustment 
to Goodman Jack test results, regarding to Plate Loading Tests. Georgiadis and 
Michalopoulos [18] have used dilatometer test results for the design of grouted piles in 
rock. Littechild et al. [19] have utilized Goodman Jack, Pressuremeter test results, as 
well as the geotechnical studies in the field for an initial comparison and discussion of 
these methodologies. A modified Rock Mass Rating is also proposed by them.

On the other hand, modeling of loading/unloading curves depending on 
pressure-deformation variation is crucial for material science and many engineering 
problems. Several design parameters, especially the rigidity of the material, can be 
obtained via these curves. The deformation modulus that is calculated by stress-strain 
curve of DT test is the essential parameter of the structural analyses performed on 
formations related with the engineering structure. The modulus of any part of the stress-
strain curve can be calculated from the test results by a modeling tool that is capable of 
simulating the behavior. As a result of any reason, such as the time consuming as well 
as transportation required attribute of the test, there may be a requirement to simulate 
the incomplete data. Furthermore, another completion requirement may be arisen from 
an event which is misfortune during the application of the test. In this study, an 
alternative tool is developed for the simulation of DT i) to model DT numerically, ii) to 
simulate the stress-strain behavior successfully, iii) to calculate the modulus of 
deformation efficiently, iv) to generate additional DT data synthetically, v) to develop 
material model alternatively, and v) to make assumptions on the characterization of the 
rock mass behavior using previous information gathered by DTs.

2. MATERIALS AND METHODS
Various geotechnical and geological experiences can be gained by tunnel 

engineers during the excavation process of the projects. Obviously, each tunnel has 
different problems based on the existing uncertainties in geological conditions [20]. 
Heterogeneity, high deformability, and low strength of soft rock masses can be 
exemplified as major difficulties in predicting the structural performance of a tunnel. 
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Therefore, effective techniques and specific data are needed to solve the instability 
problems under such circumstances [21-23].

The Goodman dilatometer test (GDT) is suitable for fractured rock masses. 
During the test, pressure is applied to the walls of borehole of 76.2 mm. diameter via a 
steel probe, and the surface deformations are measured at certain periods (Figure 1). 
The expansion of the probe by deforming the rock in the borehole is recorded in the 
precision level of 1/100 mm. Movable plates are used to transfer the load from device to 
rock walls. Each of the movable plates is supplied with two LVDTs. During the 
experiments, a 12-cylinder 52101 type probe with the maximum pressure of 64 MPa is 
utilized. The jack extension and pressure ranges are 11.4 mm. and 64 MPa, respectively. 
The most important point here is that the test does not necessitate direct access to rock 
or soil face [24]. The test has some limitations: a) it was assumed that the rock mass is 
linearly elastic, isotropic and homogeneous b) The compressive and the tensile strength 
of rock mass are equal. c) The volume of the rock mass in charge is not capable of 
simulating the discontinuities on the whole mass. The test results should carefully be 
corrected in order to prevent low elastic moduli measurements [25].   

Figure 1. The Goodman Jack Apparatus [26].

The tests are employed beneath the construction site of Dim Dam Power Tunnel, 
which is located at the north-east of Antalya city, Turkey. The geologic units in the 
investigation area consist of Paleozoic aged metamorphic rocks, which consist of mica 
schist, chloride schist, graphite schist, and limestone. In the area covered by Alanya, 
Massif three superimposed nappes (Alanya Nappes) were differentiated within the 
crystalline Alanya Massif. Nappes, which are Yumrudağ, Sugözü and Mahmutlar 
Nappes, tectonically overlie the predominantly sedimentary rocks belonging to the 
Antalya Units. The Alanya Nappes have a gently (<35º) undulating, but largely 
northerly, regional dip. Dim River Dam and its reservoir area are largely located on 
recrystallized limestone of the Yumrudağ Nappe. The Yumrudağ Nappe consists of 
schists overlain by a thick sequence of recrystallized limestone. The passage from the
schists to the overlying carbonates is gradational with schist and carbonate bands 
several meters thick at the contact. Pelites, psammites, calc-schists, meta-dolomites and 
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thin recrystallized limestone bands are the major lithologies of the schist unit [27]. Dim 
River Dam, which is located on Yumrudağ Nappe, is situated on a sequence consisted 
of chlorite schist-graphitic schist and recrystallized limestone. During the excavation of 
energy tunnel, these lithologies above mentioned were met. Recrystallized limestones 
have a jointed structure and include karstic voids. These voids mostly fill limestone 
gravels and red colored soft clays. [28].

The investigated tunnel was designed with an 8.65 m2 horse-shoe section to 
accommodate a 4.25m in diameter single tube. The tunnel lies at a relatively shallow 
depth (the depth to the ground surface elevation from the design level of the tunnels 
varies from about 20–70 m). The rock mass strength parameters at the location were 
determined by B5 which is the representative borehole in the study. Consequently, the 
moduli of deformation of the rock mass have been obtained by dilatometer tests. The 
tests were carried out on the tunnel segments in which significant instabilities and 
failures were observed (3+810km.–4+010 km.) and karstic problems (4+166 km.–
4+174 km.) encountered during the power tunnel excavations. 

At the end of the dilatometer tests, the pressure applied in two directions enable 
the user to measure the surface deformations. The GDT provide total deformation of the 
rock mass, its elastic and plastic deformation, Modulus of Elasticity as well as total and 
elastic moduli. A part of data obtained is given in Table 1. In addition, the pressure-
deformation curves give detailed information about the deformation moduli. A pressure 
deformation curve is given in Figure 2.

Table 1. Some geotechnical parameters obtained from laboratory and in-situ tests.
Dilatometer Test Laboratory Tests

Boring 
No

STA(km) Modulus of
Elasticity, E (GPa)

Modulus of 
Elasticity, E (GPa)

Poisson 
Ratio, 

Unconfined Comp. 
Strength, cu (MPa)

B1 0+104 50 300 0.25 44
B2 2+575 100 230 0.30 48
B3 3+200 100 - 0.30 -
B4 3+903 20 - 0.33 -
B5 3+985 20 - 0.33 -

Figure 2. An example of Goodman Jack dilatometer result.
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3. NEURAL NETWORKS
Neural networks (NNs) are probably the most popular numerical tools, which 

simply imitate the human’s nervous system. The networks consist of input, hidden and 
output layers, as well as steepest descent algorithm and generalized delta rule are 
generally used in this methodology. The primary advantage of NNs is its learning and 
simulating ability of training patterns in supervised manner. The basic element of a 
BPNN is the neuron (or perceptron), which produces output signal using following 
formulation:
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where, xi is input signal, wij is synaptic weight, bj is bias value, vj is induced local field, 
  is activation function, yk is output signal, n is the number of neurons for previous 
layer, and k is the index of processing neuron. In order to make the output converged to 
a certain range, an activation function must be used. Formulation of hyperbolical 
tangential function is as follows:
  )tanh( xx  (2)

In order to measure the success of the network, an error function is defined. 
Formulation of the sum of square error function is given below:
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where, z is the number of output nodes, y is the outcomes of the network and T is the 
formerly known target values of the dataset. After the calculation of the error, computed 
error is distributed “backwards” to the hidden and input layers using steepest decent 
algorithm by the following formulation:
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In this equation, Δwn and Δwn-1 are the weight change in nth and (n-1)th iterations,  is 
the momentum factor stabilizing weight change alterations and η is the learning rate 
parameter, which is expected to decrease as the iteration number increase [29]. It should 
be noted that, before beginning the training process, input data should be normalized:
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where, xui is an element of input data set, xi is the normalized x value, min(x) and max(x)
are the minimum and maximum of input data sets, respectively. NNs are widely known 
and popularly utilized techniques for last two decades; therefore, no further information 
on them will be given here.

4. SIMULATION OF DILATOMETER TESTS BY NN
As widely known, a material model can be used either to predict/verify 

the observed behavior after testing process or to estimate the behavior of untested or 
non-modeled materials. In this respect, a constitutive model is a kind of the simulation 
of the material’s stress-strain relationship, and a modeling effort of stress-strain data 
obtained by several tests on the material. In this study, it is decided to teach the 
relationship between stress (input) and strain (output) data to NN model to model the 
path-dependant stress-strain behavior of the material that was measured by GDT. While 
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the input layer consists of three consequent pressure (stress) readings and (pn-1, pn, pn+1) 
and the former deformation reading (n-1), the latter deformation reading (n) is selected 
as the output parameter which will be estimated by the NN model later. Therefore, it is 
aimed to teach the preceding deformation value by use of the former value and the 
pressure readings. Simple schematic illustration of this methodology is explained in 
Figure 3 [29].

Figure 3. Schematic illustration of BPNN based material modeling philosophy.

Under the light of the methodology explained above, the results of 50 GDTs, 
which performed on limestone formation, are utilized to train the network. Each test 
data is processed to the network separately using batch training technique. It should be 
noted for preprocessing session that the input/output patterns are normalized using Eq.5, 
as well as the synaptic weights are selected randomly from normal distribution. The 
backpropagation algorithm, which using Widrow-Hoff (delta) learning rule as well as 
steepest descent optimization technique is utilized to train the NN models. In addition, 
sum of square error energy function (Eq.3) is preferred to calculate the performance of 
the network. Finally, one hidden layer is selected, and the number of hidden neurons is 
determined by trial-and-error approach Fig. 4). Referring to Figure 4 again, the hidden 
layer number is kept between 10 and 70 neurons, and regarding to the results of the 
training sessions, an optimal mean square error is obtained for 50 hidden neurons. 
Schematic illustration of NN models utilized to model the stress-strain relationship is 
given in Figure 5. It should be noted that, for hidden layer number more than 50 
overtraining is observed. In order to avoid the overtraining and the inefficiency of  
larger hidden layers, no more trials are performed for more than 70 hidden neurons. On 
the other hand, during the trial-and-error analyses, overestimating and underestimating 
problems are also considered for intermediate as well as smaller hidden layer sizes, such 
as 5, 20, and 40. Nevertheless, the results are consistent with the findings, and selected 
hidden layer size is found to be optimum in terms of optimization and calculation 
complexity.
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Figure 4. Effect of hidden neurons on the network’s performance.

Figure 5. Network setup for dilatometer test result evaluation.

After the completion of training sessions that were performed with 50 different 
test data, resulting NN model is tested with two different test data that was never used in 
the training sessions. Results denoted that the NN model relevantly characterized the 
stress-deformation behavior. The scatter plot of the calculated and actual deformation 
values are given in Figure 6. Furthermore, R2 values of 0.963 and 0.955 show that the 
model is superior for the estimation of the deformation values obtained by dilatometer 
tests. Actual stress-deformation path and the path obtained by the model are shown in 
Figures 7a and b. It can easily be derived from Figure 8 that, BPNN model can 
successfully simulate GDT data using the information gathered from the identical test 
field (for same rock formation and properties), and be used for the prediction of the 
missing data.
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Figure 6. Calculated and measured deformations (a) 1st test (b) 2nd test.

Figure 7. Calculated and measured deformations (a) 1st test (b) 2nd test.
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Figure 8. Learning graph indicating objective function value for the BPNN model.

5. CONCLUSIONS
In this study, it is investigated whether the dilatometer tests employed on 

specific soft rocks can be modeled by NN methodology. Results showed that NNs are 
successful for modeling the stress-deformation behavior of specific rocks. In this 
respect, an alternative tool is developed for the simulation of DT numerically. It is 
therefore possible with the help of this alternative tool developed for the simulation of 
DT  i) to model DT numerically, ii) to simulate the stress-strain behavior successfully, 
iii) to calculate the modulus of deformation efficiently, iv) to generate additional DT 
data synthetically, v) to develop material model alternatively, and v) to make 
assumptions on the characterization of the rock mass behavior using previous 
information gathered by DTs.

In essence, the calculation of the average deformation modulus could be 
preferable for most of the practitioners. Nevertheless, to have chance to complete the 
strain-stress curve when some of points are not available or to simulate the stress-strain 
curve successfully, instead of a complex constitutive equation, can be very promising 
for practical and theoretical studies. In this context, such a NN model can be 
incorporated into a numerical model using finite element or discrete element analyses.

On the other hand, NN methodology is capable of successful learning, the reason 
why they are usually referred to as universal approximaters; however, NN-based
simulation model for rock analyses may not yield successful results for different rock 
mass types. Because the input data used for training characterizes unique tock behavior 
valid for tested specimens. Therefore, it is compulsory to consider rock behaviors 
differently, and not try to generalize all rock types using single NN-model. In simple 
words, NN models are data-driven techniques which should be aimed to characterize the 
properties valid for test samples under certain conditions. In this manner, the 
engineering behavior of each rock formation should be considered separately.

It should be mentioned that, NN based models neither include any constitutive 
behavior nor any material property. They can only learn the behavior characterized by 
training pattern; therefore, results are highly dependent to the quality and the quantity of 
the data. It must be considered as powerful tool for modeling the relationship between 
the input and output data, and can produce outcomes with respect to the quality of 
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training data. In this respect, determination of the input/output parameters and the 
quality/quantity of the database are crucial for a more accurate modeling of the 
deformation/pressure behavior.
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