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Abstract- Numerical solutions of the generalized Burgers-Fisher equation are presented 
based on a polynomial-based differential quadrature method with minimal 
computational effort. To achieve this, a combination of a polynomial-based differential 
quadrature method in space and a third-order strong stability preserving Runge-Kutta 
scheme in time have been used. The proposed technique successfully worked to give 
reliable results in the form of numerical approximation converging very rapidly. The 
computed results have been compared with the exact solution to show the required 
accuracy of the method. The approximate solutions to the nonlinear equations were
obtained. The approach is seen to be a very reliable alternative to the rival techniques 
for realistic problems.
Key Words- Generalized Burgers-Fisher Equation, Differential Quadrature Method, 
Nonlinear PDE, Strong Stability Preserving Runge-Kutta.

1. INTRODUCTION

Mathematical modelling of many physical systems leads to nonlinear 
ordinary/partial differential equations in various fields of science. Generalized Burgers–
Fisher equation being a nonlinear partial diffrential equation is of great importance for 
describing different mechanisms. Fisher [1] first proposed the well-known equation,
encountered in various disciplines, as a model for the propagation of a mutant gene with 

( , )u x t displaying the density of advantage. Later, the equation has been used as a basis 
for a wide variety of models for different problems. The most general form of the Fisher 
equation is called the generalized Burgers–Fisher equation.

Many researchers have spent a great deal of effort to compute the solution of the 
Burgers-Fisher equation using various numerical methods. A numerical simulation and 
explicit solutions of the generalized Burgers-Fisher equation were presented by Kaya 
and El-Sayed [2]. A restrictive Padé approximation for the solution of the generalized 
Burgers-Fisher equation was introduced by Ismail and Rabboh [3]. With the use of 
Adomian decomposition method, solution of Burgers-Huxley and Burgers-Fisher
equations were obtained by Ismail et al. [4]. Recently some various powerful 
mathematical methods such as tanh function methods [5-7], tanh-coth method [8], 
variational iteration method [9], factorization method [10] and spectral collocation 
method [11] have also been used in attempting to solve the equation.

To the best of the author’s knowledge, the differential quadrature method (DQM), 
where approximations of the spatial derivatives have been based on a polynomial of 
high degree, has not been implemented for the problems in physical phenomena 
represented by the generalized Burgers–Fisher equation so far. The DQM is an efficient 
discretization technique in solving initial and/or boundary value problems accurately. 
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After the DQM was introduced by Bellman et al. [12], it has been successfully 
employed in finding the solutions of many problems in applied sciences [13-24]. Recent 
comparative studies show that the DQM provides highly accurate and efficient solutions 
of the differential equations taking a noticeably small number of grid points. Due to the 
aforementioned advantages, the DQM has been predicted by its proponents as a 
potential alternative to the conventional solution techniques such as the finite difference 
and finite element methods. However, the DQM are of some problem-dependent 
difficulties, for example usage in mostly small scale problems, interfacial problems, etc. 
To overcome these difficulties, some researchers have extended the DQM by combining 
it with some other techniques or modifying it [25-29].

In the DQM, the weighting coefficients in that weighting sum are determined using 
test functions. Among the many kinds of test functions, the Lagrange interpolation 
polynomial is widely used since it has no limitation on the choice of the grid points. 
This leads to polynomial-based differential quadrature (PDQ) method which is suitable 
in most problems. For problems with periodic behaviours, Fourier series expansion can 
be the best approximation giving the Fourier expansion-based differential quadrature 
(FDQ) method first appeared in [30,31]. The ease for computation of weighting 
coefficients in explicit formulations [32] for both cases is based on the analysis of 
function approximation and linear vector space.
Although there has been some research into the numerical approximation of the 
generalized Burgers–Fisher equation, there has not been any work for finding the 
numerical solution of the generalized Burgers–Fisher equation with the PDQ method. In 
this paper, therefore, the use of the PDQ method has been expanded to have the 
numerical solutions of the generalized Burgers–Fisher equation.

Unlike some previous techniques using various transformations to reduce the 
equation into more simple equation then solve it, the nonlinear equations are solved 
without transforming the equation by using the current methodology. This method has 
also additional advantages over some rival techniques, mainly, ease in use and 
computationally cost-effectiveness in order to find solutions of the given nonlinear 
equations. The combination of the PDQ method in space with a third-order strong 
stability preserving Runge-Kutta (SSP-RK3) scheme in time [33] provides an efficient 
explicit solution with high accuracy and minimal computational effort for the problems 
represented by the generalized Burgers-Fisher equation.

The methodology is useful for obtaining numerical approximations of 
linear/nonlinear differential equations. Furthermore, use of considerably small number 
of grids and less need of storage make the method advantageous. The computed results 
obtained by this way have been compared with the exact solution to show the required 
accuracy of it. Moreover, the present method can be used for solving nonlinear partial 
differential equations arising in various areas.

2. THE MODEL EQUATION

Many problems encountered in various mechanisms lead to the generalized 
Burgers-Fisher equation. The generalized Burgers-Fisher equation [4], arising in various 
fields of science, of the form

(1 ), , 0t x xxu u u u u u a x b t                                                (1)
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with the initial condition
1/

1

1 1
( ,0) [ tanh( )]

2 2
u x a x   .                              (2)

The exact solution of equation (1) is
1/

1 2

1 1
( , ) ( tanh[ ( )]) , 0

2 2
u x t a x a t t                                                         (3)
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                       (4)

where ,   and   are parameters. The boundary conditions are taken from the exact 
solution (3). This study shows that the proposed algorithm is capable of achieving high 
accuracy for the problems represented by the generalized Burgers-Fisher equation.

3. POLYNOMIAL-BASED DIFFERENTIAL QUADRATURE METHOD

To drive the derivatives of a function in this method, the basis of it is used.  It 
follows that the partial derivative of a function with respect to a space variable can be 
approximated by a weighted linear combination of function values at some intermediate 
points in the corresponding variable.

The locations of the sampling points play an important role in the accuracy of 
the solution of the differential equations. Use of uniform grids can be considered to be 
the most convenient method. Mostly, the DQM gives more accurate solutions using the 
so-called Chebyshev-Gauss-Lobatto points. For a domain specified by  bxa   and 
discretized by a set of non-uniform grid points, then the coordinate of any point i  can 
be evaluated by [13,19]

1 1
(1 cos( ))( )

2 1i

i
x a b a

N


   


.                                         (5)

The values of function ( , )u x t  at any time on the above grid points are given as

( , ), 1,2...,iu x t i N . Here N indicates the number of grid points. The differential 

quadrature discretizations of the first and second order spatial derivatives are given by, 
respectively:

1

1

( , ) ( , ), 1,2,...,

( , ) ( , ), 1, 2,...,

N

x i ij jj

N

xx i ij jj

u x t a u x t i N

u x t b u x t i N





 

 




                                                         (6)

where ija  and ijb  are the weighting coefficients of the first and second order derivatives, 

respectively [32].  When the weighting coefficients are determined, the nodal values of
the governing differential equation at the mesh points are established. The coefficients 
of the first order derivatives are as follows [32]:

1, ,

1,
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i k

i j
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ii ij
j j i

x x
a i j

x x x x
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                                                         (7)
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For the weighting coefficients of the second order derivative, the formulae are [32]:

1,

1
2 ( ) , ,
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i j ij ii
i j
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j j i

b a a i j
x x

b b
 

  


  
                                                                                (8)

To gain the accurate numerical solution of differential equations, proper implementation 
of the boundary conditions is also of importance. For prescribing the boundary 
conditions, equation (1) should only be applied at the interior nodes since the solution at 
the boundary nodes is known. Thus, equation (1) can be written as follows:

    
1 1

2 2
(1 ) , 2,3,..., 1,

N Ni
i i i ik k ik k ik k

du
u u u a u b u s i N

dt
    

 
                           (9)

where

1 1 1 1i i i i i iN N iN Ns u a u b u u a u b u       .

After the discretization, equation (9) can be reduced into a set of ordinary differential 
equations in time. So

i
i

du
Lu

dt
                                                             (10)

where L  denotes a spatial nonlinear differential operator. Using the SSP-RK3 scheme, 
equation (10) is integrated from time 0t  to 0t t   through the following operations [33]

 1
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   

In this methodology, each spatial derivative on the right hand side of equation (10) was
computed with the use of the PDQ method and then the semi-discrete equation (10) was 
integrated using the low storage scheme.

4. NUMERICAL EXPERIMENTS

To find out whether the proposed algorithm gives rise to accurate solutions, the 
PDQ solutions are evaluated for some examples of the generalized Burgers–Fisher 
equation. To verify the efficiency and the versatility of the method for the current
problem, in comparison with the exact solution, absolute and relative errors for various
values of  ,   and  is reported in the following examples.

Let us take the generalized Burgers-Fisher equation in the form (1) with the 
initial condition (2) and boundary conditions taken from the exact solution. The 
computed results are compared with the analytical solutions. The numerical 
computations were performed using non-uniform grids. All computations were carried 
out using some codes produced in Visual Basic 6.0. The parameters N  and t  are 
taken to be 16 and 0.0001 (except in Table 4), respectively in the following examples.
The absolute errors and the computed solutions for some values of the parameters , 
and   are shown in Tables 1-7. In the same tables, relative errors are also presented. As 
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various problems of science were modelled by nonlinear partial differential equations 
and since therefore the generalized Burgers–Fisher equation is of high importance, 
various values of   have been considered throughout the examples. For the 
computational work, examples 1-2 given by Ismail et al.[4] and example 3 given by [2] 
are selected. The parameters ,a b  in the boundary conditions are taken to be 0, 100  and 
-1, 1 for example 4 and example 6, respectively. The parameter values in the boundary 
conditions are chosen as 0, 1 for the rest of examples.

Table 1. The results, absolute and relative errors for 1  , 0.001   and 0.001 

ix t Exact PDQ-SSP-RK3 Absolute Error Relative Error

3x 0.001 0.4999948 0.4999948 8.72E-08 1.74E-07
0.005 0.4999958 0.4999956 2.73E-07 5.46E-07
0.010 0.4999971 0.4999967 4.19E-07 8.37E-07

8x 0.001 0.4999443 0.4999442 1.04E-07 2.08E-07
0.005 0.4999453 0.4999448 5.21E-07 1.04E-06
0.010 0.4999465 0.4999455 1.04E-06 2.08E-06

13x 0.001 0.4998872 0.4998871 1.03E-07 2.07E-07
0.005 0.4998882 0.4998878 4.34E-07 8.69E-07
0.010 0.4998894 0.4998887 7.31E-07 1.46E-06

Table 2. The results, absolute and relative errors for 2  , 1   and 1 

ix t Exact PDQ-SSP-RK3 Absolute Error
Relative 

Error

3x 0.001 0.702390 0.702264 1.26E-04 1.80E-04
0.005 0.703970 0.703573 3.96E-04 5.63E-04
0.010 0.705940 0.705332 6.08E-04 8.62E-04

8x 0.001 0.653047 0.652868 1.79E-04 2.74E-04
0.005 0.654710 0.653817 8.94E-04 1.36E-03
0.010 0.656787 0.655005 1.78E-03 2.71E-03

13x 0.001 0.595117 0.594912 2.05E-04 3.45E-04
0.005 0.596825 0.595965 8.60E-04 1.44E-03
0.010 0.598959 0.597517 1.44E-03 2.41E-03

Table 3. The results, absolute and relative errors for 0.1  , 0.0025    and 8 

ix t Exact PDQ-SSP-RK3 Absolute Error Relative Error

3x 0.10 0.9166744 0.9166813 6.89E-06 7.52E-06
0.20 0.9165652 0.9165741 8.92E-06 9.73E-06
0.30 0.9164558 0.9164655 9.68E-06 1.06E-05

8x 0.10 0.9145924 0.9146302 3.79E-05 4.14E-05
0.20 0.9144814 0.9145341 5.27E-05 5.77E-05
0.30 0.9143703 0.9144286 5.83E-05 6.38E-05

13x 0.10 0.9122027 0.9122174 1.47E-05 1.62E-05
0.20 0.9120898 0.9121090 1.93E-05 2.11E-05
0.30 0.9119768 0.9119978 2.10E-05 2.30E-05
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Table 4. The average absolute and average relative errors for various  t  values with 1   , 1  , 1  , 

0.01t  , 0,a  100b  .

Example 1. In Table 1, absolute and relative errors were shown for various values of x
and t  with 1  , 0.001   and 0.001  . Considering the values of the parameters, a 
comparison has been made between the computed results and the exact solution.
Example 2. The PDQ-SSP-RK3 results of the generalized Burger’s-Fisher equation for 
various values of x  and  t  with 2  , 1   and 1   are listed in Table 2. In the table, 
absolute and relative errors were shown for the parameters. The computed solutions are 
compared with the exact solution in Table 2. 
Example 3. Absolute and relative errors were shown in Table 3 for various values of x
and t  with 0.1  , 0.0025   . The results of the PDQ-SSP-RK3 have been 
presented in Table 3. Comparison of the current results with the exact solution showed 
that the presented results are very accurate in this example.
Example 4. The average absolute and average relative errors were presented in Table 4 
for various t  values with 1   , 1  , 1  , 0.01t  , 0,a  100b  . Note that 
nearly the same error is obtained for all discretizations; the error is close to the level of 
machine accuracy, and this is believed to be a saturation effect (see Table 4).

Table 5. The absolute errors for 1   and different values of   ,   , x and t

0.01, 0.01   0.0001, 0.0001  
x t

Absolute Error Relative Error Absolute Error Relative Error

3x 1 2.14E–05 4.27E–05 2.15E–07 4.31E–07
10 2.04E–05 3.89E–05 2.15E–07 4.30E–07
50 1.53E–05 2.46E–05 2.15E–07 4.29E–07

8x 1 1.28E–04 2.56E–04 1.29E–06 2.58E–06
10 1.22E–04 2.33E–04 1.29E–06 2.57E–06
50 9.16E–05 1.47E–04 1.28E–06 2.56E–06

13x 1 4.49E–05 8.95E–05 4.50E–07 9.00E–07
10 4.28E–05 8.16E–05 4.50E–07 9.00E –07
50 3.20E–05 5.15E–05 4.49E–07 8.95E–07

0.01t  0.0001t  0.000001t 
N Average 

Absolute 
Error

Average 
Relative 

Error

Average 
Absolute 

Error

Average 
Relative Error

Average 
Absolute 

Error

Average 
Relative 

Error
6 3.63E-04 3.57E-04 5.6125E-05 1.91E-05 5.31E-05 2.34E-05
7 3.25E-04 3.46E-04 5.1905E-05 1.69E-05 4.92E-05 2.05E-05
8 2.76E-04 2.95E-04 3.4797E-05 1.85E-06 3.24E-05 4.80E-06
9 2.37E-04 2.92E-04 2.5554E-05 1.45E-05 2.34E-05 1.17E-05

10 2.20E-04 2.80E-04 3.4103E-05 3.26E-05 3.22E-05 3.01E-05
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Table 6. The absolute and relative errors for different values of  ,   ,  , x , t  with 1, 1a b  

Example 5. As seen in Table 5, for large time values, behaviour of the solution has also 
been considered and seen to be very accurate. 
Example 6. This example considers examples different boundary conditions 
( 1, 1a b   ). In the example, effects of selection of the parameters  ,  ,   have 
been observed in Tables 6,7 for various values of x  and t . The absolute and relative 
errors have been computed for various values of  ,  ,  , x and t . As is the previous 
examples, the results of the PDQ-SSP-RK3 have been presented in Tables 6,7 and the 
agreement between the results of the current algorithm and exact solution is seen to be 
very good.

In the examples; although very few number of grids are used and even when 
is taken to be very high, the PDQ-SSP-RK3 results are seen to be very accurate. The 
tables showed that a very good approximation to the actual solution of the equations 
was achieved by using the present method. The current method is a very reliable 
alternative to the rival methods which face the well-known difficulties.

Table 7. The absolute and relative errors for different values of  ,  ,  , x , t  with 1, 1a b  

0.1, 0.1,

1

 


  


0.01, 0.01,

100

 


  


0.001, 0.001,

10

 


  
x t

Absolute 
Error

Relative 
Error

Absolute 
Error

Relative 
Error

Absolute 
Error

Relative 
Error

3x 0.01 4.18E-05 8.35E-05 8.25E-06 8.31E-06 7.8E-07 8.37E-07

0.10 1.47E-04 2.92E-04 2.73E-05 2.75E-05 2.8E-06 2.95E-06
1.00 2.05E-04 3.89E-04 1.36E-05 1.37E-05 4.0E-06 4.27E-06

8x 0.01 1.03E-04 2.04E-04 2.05E-05 2.06E-05 1.9E-06 2.08E-06

0.10 7.83E-04 1.54E-03 1.48E-04 1.49E-04 1.5E-05 1.59E-05
1.00 1.21E-03 2.28E-03 8.28E-05 8.31E-05 2.4E-05 2.55E-05

13x 0.01 7.14E-05 1.40E-04 1.43E-05 1.44E-05 1.4E-06 1.46E-06

0.10 2.94E-04 5.72E-04 5.56E-05 5.59E-05 5.6E-06 6.03E-06
1.00 4.18E-04 7.78E-04 2.84E-05 2.85E-05 8.3E-06 8.91E-06

0.1, 0.1,

100

 

  


0.01, 0.01,

1

 


  


0.001, 0.001,

10

 


  
x t

Absolute 
Error

Relative 
Error

Absolute 
Error

Relative 
Error

Absolute
Error

Relative 
Error

3x 0.01 1.27E-04 1.28E-04
6.89E-06 1.38E-05 1.29E-06 1.38E-06

0.10 2.45E-04 2.46E-04 2.84E-05 5.68E-05 5.30E-06 5.68E-06
1.00 7.90E-09 7.90E-09 7.97E-05 1.59E-04 1.48E-05 1.59E-05

8x 0.01 1.78E-04 1.79E-04 1.04E-05 2.07E-05 1.94E-06 2.08E-06
0.10 9.26E-04 9.29E-04 1.02E-04 2.04E-04 1.91E-05 2.05E-05
1.00 5.52E-08 5.52E-08 4.68E-04 9.29E-04 8.71E-05 9.33E-05

13x 0.01 1.51E-04 1.51E-04 9.68E-06 1.93E-05 1.81E-06 1.94E-06
0.10 3.97E-04 3.98E-04 5.39E-05 1.07E-04 1.01E-05 1.08E-05
1.00 1.58E-08 1.58E-08 1.65E-04 3.27E-04 3.08E-05 3.30E-05
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5. CONCLUSIONS

This paper proposed a combination of polynomial based differential quadrature 
method in space and a third-order strong stability preserving Runge-Kutta scheme in 
time for solving the generalized Burgers-Fisher equation. Comparisons of the computed 
results with exact solutions showed that the method has the capability of solving the 
generalized Burgers-Fisher equation and is also capable of producing accurate solutions 
with minimal computational effort. The performance of the technique for the considered 
problems was measured by comparing with the exact solutions. It was seen that the 
combined technique approximates the exact solution very well. Ease in use and 
computationally cost-effectiveness have made the present method an efficient 
alternative to some rival methods in solving the problems modelled by the nonlinear 
partial differential equations.
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