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Abstract- In this paper, a Burger’s-Fisher equation is solved by using the Adomian’s 
decomposition method (ADM) ,  modified Adomian’s decomposition method (MADM), 
variational iteration method (VIM),  modified variational iteration method (MVIM), 
modified homotopy perturbation method (MHPM) and homotopy analysis method 
(HAM). The approximate solution of this equation is calculated in the form of series 
which its components are computed by applying a recursive relation. The existence and 
uniqueness of the solution and the convergence of the proposed methods are  proved. A 
numerical example is studied to demonstrate the accuracy of the presented methods.
Key Words: Burger’s-Fisher equation, Adomian decomposition method , Modified 
Adomian decomposition method , Variational iteration method , Modified variational 
iteration method , Modified homotopy perturbation method , Homotopy analysis 
method.
                                                  1.INTRODUCTION 
Burger’s-Fisher equation playes an important role in mathematical physics. In recent 
years some works  have been done in order to find the numerical solution of this 
equation. For example [1-11,35-37]. In this work, we develop the ADM, MADM, VIM, 
MVIM, MHPM and HAM to solve the Burger’s –Fisher equation as follows:
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with the initial condition given by:
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and boundary conditions :
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Where α, β and σ are constants. When α =0,σ = 1, Eq.(1) is reduced to the Huxley 
equation which describes nerve pulse propagation in nerve fibre and wall motion in 
liquid crystals [12]. Generalized Burger equation will be obtained when β =0. 

This equation when β = 0, has been used to investigate sound waves in a viscous 
medium by Lighthill [13]. However, it was originally introduced by Burgers [14] to 
model one-dimensional turbulence and can also be applied to waves in fluid-filled 
viscous elastic tubes and magnetohydrodynamic waves in a medium with finite 
electrical conductivity [15].

In order to obtain an approximate solution of Eq.(1), let us integrate one time 
Eq.(1) with respect to t   using the initial conditions we obtain, 

                    
t t t 2

10 0 0
u(x, t) f (x) β F(u(x, t))dt α F ((u(x, t))dt D (u(x, t)dt,                
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In Eq.(5), we assume f(x) is bounded for all x in J = [0, L].
The terms D2(u(x,t)), F(u(x,t)) and F1(u(x,t)) are Lipschitz continuous with

2 2 * * * * * *
3 1 1 2 1D (u) D (u ) L u u , F (u) F (u ) L u u , F(u) F(u ) L u u          and

 1 1 2 3: ,a T L a L L    1 1 2 1: 1 1 , : 1 .T a TL      

2 . THE ITERATIVE METHODS
2.1   Description of the MADM and ADM 
The Adomian decomposition method is applied to the following general nonlinear 
equation 

,Lu Ru Nu g                                       )6(
where u  is the unknown function,  L is the highest order derivative operator which is 
assumed to be easily invertible,  R  is a linear differential operator of order less than L, 
Nu represents the nonlinear terms, and g is the source term. Applying the inverse 
operator L-1  to both sides of Eq.(6), and using the given conditions we obtain 

       ,, 11 NuLRuLxftxu                                                                   (7)
where the function f(x) represents the terms arising from integrating the source term  g . 
The nonlinear operator Nu = G1(u) is decomposed as 
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where nA ,n 0 , are the Adomian polynomials determined formally as follows  :             
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Adomian polynomials were introduced in  as 
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2.1.1 Adomian decomposition method 
The standard decomposition technique represents the solution of u(x, t) in (6) as the 
following series, 
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where, the components 0u , 1u ,... are usually determined recursively by                            
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Substituting (10) into (12) leads to the determination of the components of  u.  Having 
determined the components u0,u1,... the solution u in a series form defined by (11) 
follows immediately. 
2.1.2  The modified Adomian decomposition method 
The modified decomposition method was introduced by Wazwaz [19]. The modified 
forms was established based on the assumption that the function  f(x)  can be divided 
into two parts, namely f1(x) and f2(x). Under this assumption we set 

)13(
     .21 xfxfxf 

Accordingly, a slight variation was proposed only on the components u   0 and u1. The 
suggestion was that only the part  f 1  be assigned to the zeroth component u0, whereas 
the remaining part f2  be combined with the other terms given in (12) to define u1. 
Consequently, the modified recursive relation

)14 (
 ,10 xfu       ,0

1
0

1
21 ALRuLxfu       ,1,11

1  
 nALRuLu nnn

was developed. 
     To obtain the approximation solution of Eq.(1), according to the MADM, we can 
write the iterative formula )   14 ( as follows:
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t t t
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The operators 2D (u),F(u) , and 1F (u)  are usually represented by the infinite series of 

the Adomian polynomials as follows :
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where i iA ,B and iL (i 0) are the Adomian polynomials .

Also, we can use the following formula for the Adomian polynomials 20 [ ]: 
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                                      2.2  Description of the VIM and MVIM 
To obtain the approximation solution of Eq.(1), according to the VIM[ 24-21 ,33-

34], we can write iteration formula as follows :

                1 2, , , , , , .1 10 0 0

t t t
u x t u x t L u x t f x F u x t dt F u x t dt D u x t dtn n n n ntn            
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Where,
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To find the optimal λ, we proceed as 

                1 2, , , , , , .1 10 0 0

t t t
u x t u x t L u x t f x F u x t dt F u x t dt D u x t dtn n n n ntn            

  
    

                                                               

(18)
From Eq.(18), the stationary conditions can be obtained as follows:
 λ / =0   and 1+ λ / = 0.
     Therefore, the Lagrange multipliers can be identified as λ = -1  and by substituting in 
(17), the following iteration formula is obtained .

) 19 (
   ,,0 xftxu 
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   To obtain the approximation solution of Eq.(1), based on the MVIM [ 27-25 ],  we can 
write the following iteration formula :

)20(
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Relations (19) and (20) will enable us to determine the components un(x, t) recursively 
for n ≥ 0.
2.3  Description of the HAM 
Consider 

N[u]=  0 , 

   ,,0 xftxu 
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where N is a nonlinear operator, u(x, t) is unknown function and x is an independent 
variable. Let u0(x,t) denote an initial guess of the exact solution u(x,t),  h 0 ≠  an 
auxiliary parameter, H(x, t) ≠ 0  an auxiliary function, and L an auxiliary nonlinear 
operator with the property L[s(x,t)]= 0  when s(x, t) = 0. Then using q ∈ [0, 1] as an 
embedding parameter, we construct a homotopy as follows :

)21(

                  .,,,,,;;,ˆ;,,,;,1 00 qhtxHtxuqtxHqtxNtxqhHtxuqtxLq  
It should be emphasized that we have great freedom to choose the initial  guess 

u0(x,t)  , the auxiliary nonlinear operator L, the non-zero auxiliary parameter  h,  and the 
auxiliary function H(x, t).
Enforcing the homotopy (21) to be zero, i.e . ,

)22 (

     0
ˆ , ; ; , , , , , 0,H x t q u x t H x t h q   

we have the so-called zero-order deformation equation 
)23 (

           .;,,,;,1 0 qtxNtxghHtxuqtxLq  

When q = 0, the zero-order deformation Eq.(23) becomes 
)24 (

   ,,0; 0 txux 
and when q = 1, since h≠ 0   and  H(x,t)≠0, the zero-order deformation Eq.(23) is 
equivalent to 

)25 (
   .,1;, txutx 

Thus, according to (24) and (25), as the embedding parameter q increases from 0  to 1, 
φ(x, t;q) varies continuously from the initial approximation u0(x,t)  to the exact solution 
u(x, t). Such a kind of continuous variation is called deformation in homotopy 28,29 .[ ]
Due to Taylor’s theorem, φ(x, t;q) can be expanded in a power series of q  as follows 
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Let the initial guess u0(x, t), the auxiliary nonlinear parameter L, the nonzero auxiliary 
parameter h and the auxiliary function H(x, t) be properly chosen so that the power 
series (26) of φ(x, t; q) converges at q = 1, then, we have under these assumptions the 
solution series 

)27 (
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From Eq.(26), we can write Eq.(23) as follows 
)28 (
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By differentiating (28) m times with respect to q, we obtain 
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To obtain the approximation solution of Eq.(1), according to HAM, let 
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Substituting (31) into (29)
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t t
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We take an initial guess u0(x,t) = f(x) , an auxiliary nonlinear operator  Lu = u,  a 
nonzero auxiliary parameter h = -1, and auxiliary function H(x,t) = 1. This is substituted 
into (32) to give the recurrence relation 

)33(
   ,,0 xftxu 
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2.4     Description of the MHPM 
To explain MHPM, we consider Eq. (1) as 
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Where 2
1 1 1 2 2 3 3F(u(x, t)) g (x)h (t),F (u(x, t)) g (x)h (t) and D (u(x, t)) g (x)h (t).   We can 

define homotopy H(u(x, t), p, m) by 
           .,,1,,,,,,, 1 txuLmtxuHtxufmotxuH 

Where m is an unknown real number and 
      .,,1 xftxutxuf 

Typically we may choose a convex homotopy by 
)34 (

                     .10,01,,1,,, 321  pxgxgxgmpptxupLtxufpmptxuH

where m is called the accelerating parameters, and for m=0  we define H(u(x, t, 
p,0) = H(u(x, t),p), which is the standard HPM .
   The convex homotopy (34) continuously trace an implicity defined curve from a 
starting point H(u(x, t) − f1(u(x, t)), 0,m) to a solution function H(u(x, t), 1,m). The 
embedding parameter p monotonically increase from o to 1 as trivial problem 

1f (u(x, t) ) 0.  is continuously deformed to original problem L(u(x, t)) =0. [30-32]

The MHPM uses the homotopy parameter  p  as an expanding parameter to obtain 
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when p → 1 , Eq. (33) becomes the approximate solution of Eq. (1), i.e . ,
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3                     . EXISTENCE  AND  CONVERGENCY  OF  ITERATIVE METHODS
Theorem 3.1. Let 10 α 1  ,  then Burger’s-Fisher equation (1),  has a unique solution .

Proof. Let u and u* be two different solutions of (5) then 

        * 2, , ,10 0 0

t t t
u u F u x t dt F u x t dt D u x t dtn      

                 * * 2 2, , , , , ,1 10 0 0

t t t
F u x t F u x t dt F u x t F u x t dt D u x t D u x t dt        

  * *
1 2 3 1T L L L u u u u       
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From which we get * * *
1 1(1 α ) u u 0.since 0 α 1.then u u 0.Implies u u        .   

and completes the proof .

Theorem 3.2. The series solution ii 0
u(x, t) u (x, t)




 of problem(1) using MADM 

convergence when 1 10 α 1, u (x, t) .   
Proof. Denot as (C[J], ׀׀ .׀׀) the Banach space of all continuous functions on J 

with the norm ||f(t)|| = max | f(t) |, for all  t  in  J.  Define the sequence of partial sums sn, 
let sn and sm be arbitrary partial sums with n ≥ m. We are going to prove that sn is a 
Cauchy sequence in this Banach space:
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From the triangle inquality we have
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Since0< α1<1, we have (1- α1
n-m) <1, then
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But |u1(x, t)|< ∞ , so, as m →∞, then 0.s sn m  . We conclude that sn is a Cauchy 

sequence in C[J], therefore the series is convergence and the proof is complete .
Theorem 3.3. The series solution ( , )u x tn of problem (1) using VIM converges when 
0< α1< 1 ,  0< β1< 1 .  
Proof .

                1 2, , , , , ,1 10 0 0

t t t
u x t u x t L u x t f x F u x t dt F u x t dt D u x t dtn n n n ntn         
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                1 2, , , , , ,10 0 0

t t t
u x t u x t L u x t f x F u x t dt F u x t dt D u x t dtt         
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By subtracting relation (38) from (39),
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 Therefore ,
1 max .1e J e en n nt    

Since 0 0, 01 then en   . So, the series converges and the proof is complete .   

Theorem 3.4. The series solution ( , )u x tn of problem (1) using MVIM converges when 
0< α1< 1 ,  0< β2< 1 .  
Proof.   The proof is similar to the previous theorem.
Theorem 3.5. If the series solution (33) of problem (1) using HAM convergent then it 
converges to the exact solution of the problem (1). 
Proof.. We assume :
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Hence, from (40)
 , 0.nm

lim u x t



) 41(                                                                                                          

 So, using (41) and the definition of the nonlinear operator L, we have 
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By substituting 1 1( ( , )) m mu x t into the relation (42) and simplifying it , we have 
2
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From (42) and (43), we have 
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u x t f x F u x t dt F u x t dt D u x t dt      
therefore, u(x, t) must be the exact solution.      
Theorem 3.6. If |um(x, t)|≤ 1 , then the series solution (37) of problem (1) converges to 
the exact solution by using MHPM .
Proof. We set,
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lim ( , ) ( , ).n nu x t u x t    

4                                      . NUMERICAl   EXAMPLE 
In this section, we compute a numerical example which is solved by the ADM, MADM, 
VIM, MVIM, MHPM and HAM. The program has been provided with Mathematica 6 
according to the following algorithm where ε is a given positive value. 
Algorithm :
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Step 1. Set n ←0 .Step 2. Calculate the recursive relations (12) for ADM, (15) for 
MADM, (36)  for  HAM ,(40) for MHPM,. (22) for VIM and (23) for MVIM.  
Step 3. If 1  n nu u   then go to step 4 , else n ← n+1  and go to step 2.

Step4.Print
0

( , ) ( , )


  n

ii
u x t u x t  as the approximate of the exact

solution(ADM,MADM,HAM and MHPM) and Print ( , )nu x t  as the approximate of the 

exact solution .(VIM and MVIM) .
Example 4.1. [6] Consider the Burger’s-Fisher equation as follows: 

(1 ),   t xx xu u uu u u

subject to the initial condition :
1 1

( ,0) tanh( ).
2 2 4

x
u x  

 With the exact solution is 
1 1 1 5

( , ) tanh( ( )).
2 2 22 2

  u x t x t

Table 1. Numerical results for Example 1 (t=0.1)
   X Errors

ADM(n=10) MADM(n=8) VIM(n=6) MVIM(n=5) MHPM (n=4) HAM (n=7)
1 114.53 10 102.13 10 123.89 10 122.73 10 131.21 10 123.53 10

1.5 115.74 10 113.27 10 122.94 10 122.16 10 131.71 10 122.58 10
2.5 126.39 10 123.69 10 137.16 10 134.17 10 144.53 10 13603 10
3 114.86 10 112.25 10 122.32 10 121.73 10 131.26 10 121.22 10

                                                    5. CONCLUSION 

The MHPM has been shown to solve effectively, easily and accurately a large class of

nonlinear problems with the approximations which convergent are rapidly to exact 
solutions. In this work, the MHPM has been successfully employed to obtain the 
approximate analytical solution of the Burger’s-Fisher equation. For this purpose, we 
showed that the MHPM is more rapid convergence than the ADM, MADM, VIM, 
MVIM and HAM .
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