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Abstract- Expansive soils exhibit significantly high volumetric deformations and so 
pose a serious threat to stability of the structures and foundations. Thus, determination 
of their swelling properties (i.e. swelling potential and swell pressure) becomes 
essential.  However, measurement of the swelling properties is time-consuming and 
requires special and expensive equipment. With this in view, efforts were made to 
develop artificial neural network (ANN) and multiple regression analysis (MRA)
models that can be employed for estimating swell percent and swell pressure. To 
achieve this, the results of free swell tests performed on statically compacted specimens 
of Kaolinite-Bentonite clay mixtures with varying soil properties were used. Two 
different ANN (ANN-1 and ANN-2) and MRA (MRA-1 and MRA-2) models have 
been developed: ANN-1 and MRA-1 models for predicting swell percent and ANN-2 
and MRA-2 models for predicting swell pressure. The results obtained from ANN and 
MRA models were compared vis-à-vis those obtained from the experiments. The values 
predicted from the ANN models match the experimental values much better than those 
obtained from MRA models. Moreover, several performance indices such as
determination coefficient (R2), variance account for (VAF), mean absolute error (MAE), 
and root mean square error (RMSE) were calculated to check the prediction capacity of 
the ANN and MRA models developed. The obtained indices make it clear that the 
constructed ANN models have shown higher prediction performance than MRA 
models. It has been demonstrated that the ANN models can be used satisfactorily to 
predict swell percent and swell pressure as a rapid inexpensive substitute for laboratory 
techniques. 
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1. INTRODUCTION

Expansive soils are that clay soils which exhibit significant volume changes 
because of soil moisture variation. Expansive soils are a worldwide problem that poses 
several challenges to civil engineers. Foundations constructed on these clays are 
subjected to large uplift forces caused by swelling, and inducing heaving, cracking, and 
break up of both building foundations and slabs on grade members. Heave problems 
account for more economic loss than all other soil problems. The cost of damages 
arising from expansive soil problems in the United States alone amounts to $2.3 billion 
annually [1].



Y. Erzin  and  N. Güneş426

The swelling of soils, in general, is due to the presence of expansive clay 
minerals, hydration of cations on clay surfaces, and release of intrinsic stresses caused 
by overconsolidation or dessication of soils [1]. Many investigations were carried out to 
analyze the factors affecting the swelling of clayey soils [2-7]. The major factors 
affecting the swelling of such soils are mainly concerned with the physical properties of 
the particles and the mass of soil, such as initial water content, type of clay mineral, 
initial dry density, clay content, of coarse grained fraction [2].

In the past few years, there has been a constant increase in the interest of neural 
network modeling in different fields of engineering science. In particular, artificial 
neural networks (ANNs) have been applied to many geotechnical engineering problems 
with success. Shahin et al. [8] gave a general overview of most ANN applications in the 
geotechnical engineering literature. 

In this study, efforts were made to develop artificial neural network (ANN) and 
multiple regression analysis (MRA) models that can be employed for estimating swell 
percent and swell pressure. To achieve this, the results of free swell tests performed on 
statically compacted specimens of Kaolinite-Bentonite clay mixtures with varying soil 
properties [9] were used. Two different ANN models (ANN-1 and ANN-2) and MRA 
models (MRA-1 and MRA-2) were developed: ANN-1 and MRA-1 models for 
predicting swell percent and ANN-2 and MRA-2 models for predicting swell pressure. 
The results obtained from ANN and MRA models were compared vis-à-vis those 
obtained from the experiments. It is found that the values predicted from the ANN 
models match the experimental values much better than those obtained from MRA 
models.  Moreover, several performance indices such as determination coefficient (R2), 
variance account for (VAF), mean absolute error (MAE), and root mean square error 
(RMSE) were calculated to check the prediction capacity of the ANN and MRA models 
developed. Both ANN models have shown higher prediction performance than MRA 
models based on the performance indices. 

2. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are computational model, which is based on 
the information processing system of the human brain [10]. The current interest in 
ANNs is largely due to their ability to mimic natural intelligence in its learning from 
experience [11]. Many authors have described the structure and operation of ANNs [12-
14]. ANNs architectures are formed by three or more layers, which consist of an input 
layer, one or more hidden layers, and an output layer. Each layer consists of a number 
of interconnected processing elements (PEs), commonly referred to as neurons. The 
neurons interact with each other via weighted connections. Each neuron is connected to 
all the neurons in the next layer. In the input layer, data are presented to the network. 
The output layer holds the response of the network to the input. The hidden layers 
enable these networks to represent and compute complicated associations between 
inputs and outputs. This ANN architecture is commonly referred to as a fully 
interconnected feed-forward multi-layer perceptron (MLP).  In addition, there is also a 
bias, which is only connected to the neurons in the hidden and output layers, with 
modifiable weighted corrections.
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The number of hidden layers used depends on the degree of the complexity of 
the problem. ANNs with one or two hidden layers and adequate number of hidden 
neurons are found to be quite useful for most problems [15]. The number of neurons in 
the hidden layers depends on the nature of the problem. There are various methods to 
determine the number of neurons in the hidden layer [16-18]. However, these methods 
present general guidelines only for selection of an adequate number of neurons. 

The neural network "learns" by modifying the weights of the neurons in 
response to the errors between the actual output values and the target output values. 
Several learning algorithms have been developed. The back-propagation learning 
algorithm is the most commonly used neural network algorithm [19]. The back-
propagation neural network has been applied with great success to model many 
phenomena in the field of geotechnical engineering [8 and 20]. In the back-propagation 
neural network, learning is carried out through gradient descent on the sum of the 
squares of the errors for all the training patterns [20]. Each neuron in a layer receives 
and processes weighted inputs from neurons in the previous layer and transmits its 
output to neurons in the following layer through links. Each link is assigned a weight 
which is a numerical estimate of the connection strength. The weighted summation of 
inputs to a neuron is converted to an output according to a nonlinear transfer function. 
The common transfer function widely used in the literature is the sigmoid function. The 
changes in the weights are proportional to the negative of the derivative of the error 
term. One pass through the set of training patterns, together with the associated updating 
of the weights, is called a cycle or an epoch. Training is carried out by repeatedly 
presenting the entire set of training patterns (updating the weights at the end of the each 
epoch) until the average sum squared error over all the training patterns is minimal and 
within the tolerance specified for the problem.

At the end of the training phase, the neural network should correctly reproduce 
the target output values for the training data; provided errors are minimal (i.e., 
convergence occurs). The associated trained weights of the neurons are then stored in 
the neural network memory. In the next phase, the trained neural network is fed a 
separate set of data. In this testing phase, the neural network predictions using the 
trained weights are compared to the target output values. The performance of the overall 
ANN model can be assessed by several criteria [10 and 21]. These criteria include 
coefficient of determination R2, mean squared error, mean absolute error, minimal 
absolute error, and maximum absolute error. A well-trained model should result in an R2

close to 1 and small values of error terms. 
In this study, determination of swell percent and swell pressure has been 

modeled using the ANN in which network training was accomplished with the neural 
network toolbox written in Matlab environment (Math Works 7.0 Inc. 2006) and the 
Levenberg-Marquardt back-propagation learning algorithm [22] was used in the training 
stage. Details of the experimental investigations, which have yielded the data for these 
models, are presented in the following section. 

3. EXPERIMENTAL INVESTIGATIONS

To obtain clays possessing a wide range of plasticity index, the commercially 
processed kaolinite and bentonite mineral clays were mixed in preselected proportions. 
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The properties of kaolinite and bentonite used are given in Table 1. In Table 1, Gs is the 
specific gravity, C is the clay percent, LL is the liquid limit, PL is the plastic limit, Ip is 
the plasticity index and CEC is the cation exchange capacity. The composition and the 
properties of the four clay mixtures obtained are shown in Table 2.

Table 1. The properties of kaolinite and bentonite
C LL PL Ip CEC

Material Gs (%) (%) (%) (%) (meq/100 g)
Kaolinite 2.66 49 37 22 15 12
Bentonite 2.78 78 472 96 376 86

Table 2. The compositions and properties of the four clay mixtures
Kaolinite Bentonite C LL PL Ip CECClay

mixture 
type

(wt.%) (wt.%) (%) (%) (%) (%) (meq/100g)

1 95 5 50.38 48 25 23 13.85
2 90 10 51.86 59 26 33 17.07
3 85 15 53.34 81 26 55 22.30
4 80 20 54.82 108 26 82 26.29

Free swell tests (ASTM D-4546-85) [23] were performed on statically 
compacted samples of the clay mixtures with initial water contents w of ranging from 
10 % to 27% and having initial dry unit weights dry of ranging from 14.0 to 17.9 kN/m3

in conventional oedometer cells; and swell percent, S, and the swell pressure, Sp, of each 
specimen, possessing plasticity indices, initial water contents and initial dry unit 
weights were determined. Tables 3 and 4 present the free swell test results of the clay 
mixtures 1 and 2 and clay mixtures 3 and 4, respectively, which is the database of the 
neural network models developed in this study.

4. DEVELOPMENT OF ANN MODEL FOR PREDICTION OF SWELL 
PERCENT

An ANN model (ANN-1) is designated to predict swell percent (S) from the soil 
properties. The inputs used in the model are the soil properties such as clay percent (C), 
cation exchange capacity (CEC), plasticity index (Ip), dry unit weight (dry), and water 
content (w), the output is the swell percent (S) of the specimen. The boundaries for input 
and output parameters of the ANN-1 model are listed in Table 5. The input and output 
data were scaled to lie between 0 and 1, by using Eq. 1.  In Eq. 1, where xnorm is the 
normalized value, x is the actual value, xmax is the maximum value and xmin is the 
minimum value. 

 
 minmax

min

xx

xx
xnorm 


                                                                                                         (1)
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Table 3.  Free swell test results of the clay mixtures 1 and 2

dry w S SpClay mixture 
type (kN/m3) (%) (%) (kN/m2)

15.28 10.00 27.0 86.6
16.87 10.00 30.2 163.33
17.57 10.00 33.2 169.33
14.57 15.00 18.3 65.00
15.66 15.00 20.5 96.00
16.47 15.00 24.8 175.00
16.92 15.00 26.2 337.50
16.20 20.00 11.1 56.67
16.30 20.00 13.1 87.20
16.34 20.00 15.1 88.66
16.57 20.00 16.8 94.00
14.95 25.00 5.9 18.54
15.06 25.00 5.3 19.20
15.46 25.00 6.0 22.71

1

15.19 25.00 6.3 19.33
14.50 10.00 35.43 365.52
16.13 10.00 40.21 733.33
16.45 10.00 42.43 750.00
14.06 15.00 40.46 363.6
15.10 15.00 40.77 364
16.12 15.00 40.00 713.33
16.10 15.00 42.21 748
14.49 20.00 25.03 96.15
15.47 20.00 26.02 99
16.24 20.00 27.97 376.92
16.44 20.00 28.65 388.57
15.82 25.00 14.18 67
15.30 25.00 22.65 166.67
15.23 25.00 24.95 147.33

2

14.94 25.00 27.68 146.23

It is a common practice to divide the available data into two subsets; a training 
set, to construct the neural network model, and an independent validation set to estimate 
model performance in the deployed environment [24]. However, dividing the data into 
only two subsets may lead to model overfitting. Overfitting makes multi-layer 
perceptrons (MLPs) memorize training patterns in such a way that they cannot 
generalize well to new data [10]. As a result, crossvalidation technique [25] was used as 
the stopping criterion in this study. In this technique, the database is divided into three 
subsets: training, validation and testing. The training set is used to update networks’ 
weights. During this process the error on the validation set is monitored. When the error 
on the validation set begins to increase, the training is stopped because it is considered 
to be the best point of generalization. Finally, testing data is fed into the networks to 
evaluate their performance. Therefore, in total, 56% of the data were used for training, 
24% for testing, and 20% for validation.
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Table 4.  Free swell test results of the clay mixtures 3 and 4

dry w FS PsClay mixture 
type (kN/m3) (%) (%) (kN/m2)

15.86 11.80 56.66 356.67
14.64 14.62 48.28 625.00
15.52 15.50 52.68 700.00
15.87 15.66 59.85 716.67
14.81 19.51 48.94 440.00
15.47 20.87 54.82 574.80
16.34 21.03 59.28 597.56
16.56 19.45 60.13 652.50
14.79 24.60 44.80 278.89
17.90 23.99 48.53 329.51
17.01 24.75 53.61 270.00

3

15.37 24.66 52.92 250.00
14.28 14.60 68.40 637.50
15.33 16.30 75.47 678.00
15.88 16.73 91.64 355.38
15.83 18.73 92.78 396.67
14.38 15.31 67.17 680.71
15.15 15.49 73.27 695.00
15.99 15.69 89.60 356.67
16.00 14.90 89.65 359.23
14.68 20.30 73.50 366.67
15.46 19.48 72.63 372.50
16.08 21.22 85.37 365.30
16.06 19.37 81.35 386.67
14.74 24.78 53.95 315.38
14.72 26.42 60.28 364.00
14.91 27.69 67.56 349.23

4

15.19 25.02 71.82 447.50

Table 5. Boundaries of the parameters used for the ANN model developed for the prediction of swell 
percent

Parameters used Minimum Maximum
Input parameters:
     C           (%) 50.38 54.82
     CEC         13.85 26.29
     Ip          (%) 23.37 82.40
     dry    (kN/m3) 14.06 17.90
      w      (%) 10.00 27.69
Output parameter
      S    (%) 5.31 92.78

The neural network toolbox of MATLAB7.0, a popular numerical computation 
and visualization software [26], was used for training, validation, and testing of MLPs. 
Firstly, one hidden layer was chosen. Then, the optimum number of neurons in the 
hidden layer of the model was determined by varying their number starting with a 
minimum of 1 then increasing the network size up to (2I +1), (I is the number of input 
variables),  in steps by adding 1 neuron each time. It should be noted that (2I +1) is the 
upper limit for the number of hidden layer neurons needed to map any continuous 
function work with I inputs, as discussed by Caudill (1988) [27]. Different transfer 
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functions (such as log-sigmoid [28] and tan-sigmoid [15]) were investigated to achieve 
the best performance in training as well as in testing. Two momentum factors, 0.01 
and 0.001) were selected for the training process to search for the most efficient ANN 
architecture. The coefficient of determination, R2, and the mean absolute error, MAE,
were used to evaluate the performance of the developed ANN models. The performance 
of the network during the training and testing processes was examined for each network 
size until no significant improvement occurred. The optimal ANNs performance was 
obtained with the model having 8 neurons in the hidden layer, 14 epochs, a 0.001 
momentum factor, a log-sigmoid transfer (activation) function in the neurons of the 
hidden layer and in the neuron of the output layer. 

5. DEVELOPMENT OF ANN MODEL FOR PREDICTION OF SWELL 
PRESSURE

An ANN model (ANN-2) is designated to predict swell pressure (Sp) from the 
soil properties such as clay percent (C), cation exchange capacity (CEC), plasticity 
index (Ip), dry unit weight (dry), water content (w), and swell percent (S). For this 
purpose, an ANN architecture with six inputs and one output was constructed. The 
boundaries for input and output parameters of the ANN-2 model are listed in Table 6. 
The input and output data were scaled to lie between 0 and 1, by using Eq. 1.

Crossvalidation technique [25] was used as the stopping criterion as modeling of 
swell percent (see Section 4). Therefore, in total, 56% of the data were used for training, 
24% for testing, and 20% for validation. Firstly, one hidden layer was chosen. Then, 
two hidden layers were chosen for better performance. During the design of optimal 
ANNs, the trials were formed similar to the trials made in modeling of swell percent.
The optimal ANNs performance was obtained with the model having 2 hidden layers, 8
neurons in the hidden layers, 16 epochs, a 0.001 momentum factor, a log-sigmoid 
transfer function in the neurons of the hidden layers and in the neuron of the output 
layer.

Table 6. Boundaries of the parameters used for the ANN model developed for prediction of swell 
pressure

Parameters used Minimum Maximum
Input parameters:
     C           (%) 50.38 54.82
     CEC         13.85 26.29
     Ip          (%) 23.37 82.40
     dry    (kN/m3) 14.06 17.90
      w      (%) 10.00 27.69
      FS     (%) 5.31 92.78
Output parameter
       Sp    (kPa) 18.54 750.00

6. DEVELOPMENT OF MULTIPLE REGRESSION ANALYSIS MODELS FOR 
THE PREDICTION OF SWELL PRECENT AND SWELL PRESSURE

Multiple regression analysis (MRA) was performed to predict swell percent, S, 
and swell pressure, Sp. To achieve this, two MRA models (MRA-1 and MRA-2) were 
developed by using SPSS 8.0.0. The experimental data (refer Tables 1 and 2) were used 
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in the development of these models. C, CEC, PI, w, and dry values were included in the 
model MRA-1, which yields Eq. 2. C, CEC, PI, w, and dry and S values were included 
in the model MRA-2, which yields Eq. 3. 

S =-432.06+7.73C + 0.12CEC +0.46PI+4.31dry -1.18w                             R2=0.95      (2)                            

Sp =-13046.2+257.10C +43.13CEC -18.18PI+33.43dry -25.21w -3.41S    R2=0.67    (3)                            

7. RESULTS AND DISCUSSION

A comparison of experimental results with the results obtained from ANN-1 
model is depicted in Fig.1 for training, validation, and testing samples. It can be noted 
from the figure that S values obtained from the ANN model are quite close to the 
experimentally obtained S values, as their R2 values are much close to unity. Therefore, 
it is concluded that the swell percent of clay soils included in this study could be 
predicted from easily determined soil properties using trained ANNs values. Similar 
ANN models could also be developed for other materials using the same input 
parameters.
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Figure 1. Comparison of measured/predicted S values from the ANN-1 model for a) 
training samples and b) testing and validation samples

A comparison of experimental results with the results obtained from ANN-2
model is depicted in Fig. 2 for training, validation, and testing samples. It can be noted 
from the figure that Sp values obtained from the ANN model are in good agreement with 
the experimentally obtained Sp values, as R2 of 0.9855, 0.9846 and 0.9222 for training, 
validation and testing samples, respectively. Therefore, it is concluded that the swell 
pressure of clay soils included in this study could be predicted using trained ANNs 
values. If swell percent values are not available, swell percent values could be predicted 
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by using trained ANN structure in the ANN-1 model. Similar ANN models could also 
be developed for other materials using the same input parameters.
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Figure 2. Comparison of measured/predicted Sp values from the ANN-2 model for a) 
training samples and b) testing and validation samples

A comparison of experimental results with the results obtained from the MRA-1
and MRA-2 models is depicted in Fig.3 for all samples. It can be noticed from Figure 
3(a) that S values obtained from the MRA-1 model are in good agreement with the 
experimentally obtained S values, as R2 of 0.9511. Thus, it is concluded that the swell 
pressure of clay soils included in this study could be also predicted from easily 
determined soil properties by using Eq. (2). Similar MRA models could also be 
developed for other materials using the same input parameters. It can be noted from 
Figure 3(b) that the MRA-2 model yields poor predictions, as R2 of 0.6687. Thus, Eq. 
(3) is not recommended for routine engineering applications.

In fact, the coefficient of correlation between the measured and predicted values 
is a good indicator to check the prediction performance of the model. In this study, 
variance VAF, represented by Eq. (4), and the root mean square error RMSE, 
represented by Eq. (5), were also computed to assess the performance of the developed 
models [29-32].   
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where var denotes the variance, y is the measured value, ŷ is the predicted value, and N 
is the number of the sample. If VAF is 100 % and RMSE is 0, the model is treated as 
excellent.
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Figure 3. Comparison of measured/predicted values from a) MRA-1 model and 
b)MRA-2 model for all samples

The performance indices calculated for the ANN models and the MRA models 
developed in this study are given in Table 7. Both ANN models have exhibited higher 
prediction performance than MRA models based on the performance indices in Table 7. 
The values of the indices obtained prove that the predictive models constructed are quite 
powerful. 

Table 7. Performance indices (R2. RMSE. MAE and VAF) of the ANN and MRA models 
developed

Model Data R2 RMSE MAE VAF (%)
Training set 0.9899 2.44 1.53 98.99
Validation set 0.9770 4.76 3.87 96.88ANN-1
Testing set 0.9652 5.15 3.82 96.16
Training set 0.9855 26.11 19.08 98.41
Validation set 0.9222 60.60 48.13 94.03ANN-2
Testing set 0.9486 72.65 64.48 91.91

MRA-1 All set 0.9511 5.41 4.22 95.11
MRA-2 All set 0.6687 130.03 107.01 66.87

8. CONCLUDING REMARKS

In this study, efforts were made to develop artificial neural network (ANN) and 
multiple regression analysis (MRA) models that can be employed for estimating swell 
percent and swell pressure. For this purpose, the results of free swell tests performed on 
statically compacted specimens of Kaolinite-Bentonite clay mixtures with varying soil 
properties were used.

Two different ANN models (ANN-1 and ANN-2) and MRA models (MRA-1 
and MRA-2) were developed: ANN-1 and MRA-1 models for predicting swell percent 
and the others (ANN-2 and MRA-2 models) for predicting swell pressure. The input 
parameters used in the ANN-1 and MRA-1 models are the soil properties such as clay 
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percent, cation exchange capacity, plasticity index, water content and dry unit weight 
while in the ANN-2 and MRA-2 models they are the same soil properties and swell 
percent. The results obtained from ANN and MRA models were compared vis-à-vis 
those obtained from the experiments. It is found that the values predicted from the ANN 
models match the experimental values much better than those obtained from MRA 
models. Therefore, the swell percent and swell pressure of clay soils included in this 
study could be predicted using trained ANN structures as an inexpensive substitute for 
the laboratory testing, quite easily and efficiently. Similar ANN models could also be 
developed for other materials by using the same input parameters.

To check the prediction performance of the ANN and MRA models developed, 
several performance indices such as R2, VAF, MAE, and RMSE were calculated. Both 
ANN models have shown higher prediction performance than MRA models based on 
the performance indices. The performance level attained in the ANN models has also 
shown that the neural network is a useful tool to minimize the uncertainties encountered 
during the soil engineering projects. For this reason, the use of neural network may 
provide new approaches and methodologies. 
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