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Abstract-A Variational Monte Carlo Method (VMC) is used for the calculations of 
radial distribution function of nuclear matter. Urbana 14v  potential is used for the 
nucleon-nucleon interactions in the calculations. The new expression for radial 
distribution function of nuclear matter is obtained by fitting of Monte Carlo simulations 
results to a function.
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1.INTRODUCTION

The radial distribution function (RDF) is very important in the theory of N-body 
systems because it gives the number of the particle between r and r+dr about a central 
particle at the origin of r and it can also be thought of as the factor that multiplies the 
bulk density,  , to give a local density )()( rgr    about some fixed particle. 
Another important point is that RDF provides a sufficient information in calculating all 
the thermodynamic functions of the system.

The most reliable calculations of the radial distribution function are molecular 
dynamics or Monte Carlo calculations. One advantage of these calculation methods is 
that the inter-particle potential is known. Therefore, these calculations serve as 
“experimental” data which is used to test various theories [1]. For hard spheres, the 
molecular dynamics radial distribution function was first given by Alder and Hecht [2], 
and Barker, Watts and Henderson [3]. It has been calculated for the Lennard-Jones 
potential by Verlet [4], and for an inverse 12 potential by Hansen and Weis [5]. 
Moreover, Barker, Fisher and Watts [6] have presented extensive Molecular Dynamic 
and Monte Carlo calculations with three body forces. They are useful in the perturbation 
and transport theories [7]. Recently, molecular dynamic simulations have used the radial 
distribution function for Lennard-Jones fluids [8, 9], and mixing rules for binary 
Lennard-Jones chains have been tested by performing Monte Carlo simulations [10].
The radial distribution function can also be determined by X-ray diffraction studies [11-
13]. However, various methods and techniques have been used to obtain the radial 
distribution function [14-16]. In this paper, the radial distribution function for nuclear 
matter is calculated by using the variational Monte Carlo method (VMC) with various 
isospin asymmetry parameters,   at different densities. Moreover, the new expression 
for radial distribution function of nuclear matter is also obtained by using Monte Carlo 
simulations results.

This paper is organized as follows: the interaction potential and symmetric,
asymmetric nuclear matter is define and is determined in Section 2 and in Section 3, 



F. Manisa, A. Küçükbursa, K. Manisa and T. Babacan 415

respectively. In section 4, Monte Carlo simulations are described. The results for the 
application of the Variational Monte Carlo method to the calculation of the radial 
distribution function of nuclear matter are given in section 5. Then we conclude in 
section 6.

2. INTERACTION POTENTIAL

The Hamiltonian operator of a system consisting of N particles can be written as

H= 
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where Vij is a two body interaction potential. Here, we have used only the first four 
terms of the Urbana V14 potential [17] for two nucleon interaction in our calculations. 
Because the contributions of latter terms of the Urbana V14 potential are much smaller 
than those of the first four terms in our nuclear matter calculations, 14 operator 
components of the Urbana V14 potential are necessary to have a good fit to the 
experimental data. Thus, we have used the two-nucleon interaction
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where ,,,  VVV c  and V  depend only on the distance between the nucleons i and j. 
Each term in Eq. (2) has three parts
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representing the long-range interactions )( iV , the intermediate-range interactions )( i
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where 17.0  fm  is the inverse compton wavelength for pions. The intermediate and 
short range parts are
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respectively. The values of the potential strengths Ii and Si and the parameters c, R, a are 
given in Table I.

Table 1:. Parameters of the Urbana V14 nucleon-nucleon potential.

c=0.2 fm-2, R=0.5 fm, a=0.2 fm

I iI iS
c -5.7030 2575.3

  0.7628 -366.56

  0.8892 -466.56

 -0.2790   402.81
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Another important point is that three and more body interactions are very 
important in nuclear matter calculations. Therefore, we use the phenomenological 
approach assuming the density dependent term to be proportional to the short ranged 
part of the Urbana potential, and assume that the total interaction, including the many 
body effects, is of the form


  )(14 ssI vvvvTNIV  , (6)

where   is the number density of nucleons.   and   in the above equation are free 
parameters.

3. SYMMETRIC AND ASYMMETRIC NUCLEAR MATTER

Nuclear matter is an idealized system of interacting nucleons (protons and 
neutrons). It is not matter in a nucleus, but a hypothetical system consisting of a huge 
number of protons and neutrons interacting by only nuclear force and no Coulomb 
force. Volume and particle numbers are infinite, but the ratio of these quantities is finite. 
Infinite volume implies no surface effects and translational invariance (only differences 
in position matter, not absolute positions).

A common idealization is a symmetric nuclear matter which consists of equal 
numbers of protons and neutrons. The energy per particle of the asymmetric nuclear 
matter can be expanded about symmetric nuclear matter in a Taylor series in terms of 
the isospin asymmetry parameter 
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1
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If the fourth order and higher order terms in   are ignored, then the total energy 
per particle of asymmetric nuclear matter can be written as:

)()(),( 2  SEE s  , (8)

where )(sE  is the energy per nucleon of symmetric nuclear matter, 
pn
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the  isospin asymmetry parameter (where Nn and Np are the numbers of neutrons and 
protons) and )(S  is called as the symmetry energy. A detailed explanation and 
information for the properties of the symmetric and asymmetric nuclear matter can be 
found in our previous publications [18, 19].

4. MONTE CARLO SIMULATIONS

We will consider a system of nucleons confined in a cube of side L with periodic 
boundaries. The size of the cube determined from the density and number of particles 
was chosen so as to correspond to a closed shell in k-space representing all the 
symmetries of the ground state. One must use the fully occupied closed shells of plane 
waves for both neutrons and protons in order to preserve the isotropy of the system. The 
number of spin-isospin degeneracy of the spatial states is denoted by g (g=2 for proton 
and neutron matter). Number of spatial states in each shell is given in Table 1. For our 
wave function, in order to represent all symmetries of the ground state, the number of 
spatial states (I) should be chosen from the series of I=1, 7, 19, 27, 33, 57, 81, ..., so that 
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a complete shell in momentum space must be filled. Thus, the number of neutrons or 
protons must be chosen from the set of  2,14,38,54,66,114,…. Then the total number of 
nucleons in nuclear matter becomes N=g(In+Ip). The chosen In, Ip and the total number 
of nucleons are given in Table 2. 

Table 2: Number of the spatial states in each shell. The number of nucleons were 
chosen in accordance with this table.

2|| n 0 1 2 3 4 5 6

Allowed zyx nnn ,,
values

0,0,0 1,0,0 1,1,0 1,1,1 2,0,0 0,1,2 1,1,2

0,1,0 1,0,1 -1,1,1 0,2,0 1,0,2 1,2,1

0,0,1 0,1,1 1,-1,1 0,0,2 2,1,0 2,1,1

-1,0,0 1,-1,0 1,1,-1 -2,0,0 0,2,1 -1,1,2

0,-1,0 1,0,-1 -1,-1,1 0,-2,0 1,2,0 1,-1,2

0,0,-1 0,1,-1 -1,1,-1 0,0,-2 2,0,1 1,1,-2

-1,1,0 1,-1,-1 0,-1,2 -1,2,1

-1,0,1 -1,-1,-1 -1,0,2 1,-2,1

0,-1,1 2,-1,0 1,2,-1

-1,-1,0 0,2,-1 -2,1,1

-1,0,-1 -1,2,0 2,-1,1

0,-1,-1 2,0,-1 2,1,-1

0,1,-2 -1,-1,2

1,0,-2 -1,1,-2

-2,1,0 1,-1,-2

0,-2,1 -1,-2,1

1,-2,0 -1,2,-1

-2,0,1 1,-2,-1

0,-1,-2 -2,-1,1

-1,0,-2 -2,1,-1

-2,-1,0 2,-1,-1

0,-2,-1 -1,-1,-2

-1,-2,0 -1,-2,-1

-2,0,-1 -2,-1,-1

States in This Shell 1 6 12 8 6 24 24

States up to This Shell 1 7 19 27 33 57 81

Table 3: The numerical values used in Monte Carlo simulations
 np Ip Number of proton nn In Number of neutron Number of total nucleon 

0.9 1 1 2 3 19 38 40
0.78124 2 7 14 6 57 114 128
0.75 1 1 2 2 7 14 16
0.58824 2 7 14 4 27 54 68
0.5 3 19 38 6 57 114 152
0.35714 4 27 54 6 57 114 168
0.26924 3 19 38 5 33 66 104
0.17392 3 19 38 4 27 54 92
0.1 4 27 54 5 33 66 120
0 5 33 66 5 33 66 132
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Monte Carlo simulations for nuclear matter with various isospin asymmetry 
parameters were carried out using the Metropolis algorithm [20] and a cubic box of side 
L containing N nucleons with periodic boundary conditions. The trial wave function 
used is a Jastrow type wave function in the form





ji

ijjj rfR )()(


 , (9)

where   is the many particle wave function for the system of non-interacting particles 
and R


 is a 3N dimensional vector representing the coordinates of particles, while jf  is 

the two particle correlation function. Jastrow suggests that in general, this correlation 
function can be an operator function [21]. Howeve, in most applications jf  is assumed 

to depend only on the interparticle distance, jiij rrr  . 

One can use plane waves rkier
 .)(   for the single particle wave functions of 

the nucleons in bulk matter. Because we consider nucleons restricted to a cubic box of 
side L, Lnk /2


  and n


 is an integer vector. In order to conserve the rotational 

invariance of bulk nuclear matter, the number of neutrons and protons in the box is 
restricted to completely filled shells only. Under these conditions, the many particle 
wave function in eq.(9) becomes

 NNPP DDDDR)( (10)

where PD , PD , ND  and ND  are the slater determinants of single particle wave 
functions for the corresponding spin, isospin state with

).det( s
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The nuclear forces are short ranged and saturate very quickly, thus the radial 
distribution function is not expected to have long range correlations. Therefore, for the 
two particle correlation function fj in eq.(9), a function in the following form is used
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where t, 0r  and a are the variational parameters. A pseudo potential )(ru  for practical 

reasons is defined  such that  our variational wave function( ))(exp()( ijijj rurf  )

becomes
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the 3N dimensional space with the probability distribution 
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Is sampled by using a random walk created by the usual Metropolis method. 
Ceperley et.al.[22] have described the most effective way to handle the ratio of the 
determinants in this wave function.
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The VMC simulation methodology has been reported before in [18, 19, 22] and 
the details can be found in those references.

5. RESULTS

In this section, the results obtained from Monte Carlo simulations for nuclear 
matter with various isospin asymmetry parameters are presented. The radial distribution 
functions of nuclear matter at densities between 0.02fm-3 and 0.20fm-3 in 0.02 steps for 
each isospin asymmetry parameter and a new expression for radial distribution function 
of nuclear matter from these data have been obtained.

The new expression for RDF of nuclear matter is found by fitting the results 
obtained from VMC simulations to a function:

cbr)]exp(a[1g(r)  . (16)
In Fig. 1, we plot the selected radial distribution functions of nuclear matter with 

various isospin asymmetry parameters at densities between 0.02fm-3 and 0.20fm-3, 
calculated with VMC method. All parameters a, b and c at each density in Eq. (16) used
in fitting. are given in Table 4.

It can be seen from Fig.1 that radial distribution functions rapidly approach zero 
at shorter distance than 0.3 fm. This effect caused from short range repulsive parts of 
nucleon-nucleon interactions. However, all of radial distribution functions approach to 
asymptotic value of 1 fm at shorter than 5 fm value. Radial distribution functions reach 
to this asymptotic value in short range so long as the density increases. Also, radial 
distribution functions almost display the same behavior between 0 and 1 fm range. 
Fluctuation that is between 1.5 and 3 fm range in radial distribution functions takes 
smooth forms as so to be approached to symmetric nuclear matter (  =0).
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Figure 1. Nuclear matter radial distribution functions for  =0.9 (a),  =0.35714 (b) 
and  =0 (c). The density values increase from bottom to top with the lowermost curve
corresponding to 0.02fm-3 and the uppermost one corresponding to 0.20fm-3.
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Table 4. Coefficients of the expression for RDF of nuclear matter
YP=0.5 Symmetric nuclear matter

)( 3fm a b c

0.02 0,9818 1,1872 1,2279
0.04 0,9810 1,7235 1,8207
0.06 0,9834 2,2151 3,2190
0.08 0,9832 2,4556 3,2489
0.10 0,9854 2,6501 3,7443
0.12 0,9868 2,9113 4,6280
0.14 0,9915 2,8519 4,6306
0.16 0,9914 3,2981 6,7760
0.18 0,9922 3,3361 6,5198
0.20 0,9945 3,3575 6,6010

YP=0.45
0.02 0,9791 1,2890 1,4885
0.04 0,9805 1,6631 1,7384
0.06 0,9818 1,9883 2,1476
0.08 0,9837 2,3224 2,9997
0.10 0,9883 2,2476 2,6306
0.12 0,9947 2,3457 3,4888
0.14 0,9907 2,9210 5,1770
0.16 0,9959 2,7497 4,5878
0.18 0,9948 3,2561 7,0447
0.20 0,9956 3,3178 6,9899

YP=0.41
0.02 0,9764 1,2615 1,4539
0.04 0,9761 1,7750 2,0384
0.06 0,9774 2,1442 2,6014
0.08 0,9842 1,9617 1,9207
0.10 0,9819 2,6704 3,9885
0.12 0,9865 2,5162 3,2039
0.14 0,9897 2,7532 4,2591
0.16 0,9900 3,1357 5,9392
0.18 0,9949 2,9434 5,0484
0.20 0,9945 3,4697 8,2371

YP=0.36538
0.02 0,9801 1,2137 1,3706
0.04 0,9811 1,6596 1,8576
0.06 0,9849 1,8287 2,0027
0.08 0,9865 2,0459 2,2998
0.10 0,9902 2,2034 2,7194
0.12 0,9901 2,4253 3,0788
0.14 0,9912 3,4931 11,1655
0.16 0,9895 2,8963 3,9533
0.18 0,9948 2,8415 4,2569
0.20 0,9973 3,1100 5,7366

YP=0.32143
0.02 0,9879 1,1419 1,4300
0.04 0,9877 1,4989 1,6132
0.06 0,9888 1,8653 2,3048
0.08 0,9893 2,1974 2,9570
0.10 0,9920 2,2700 3,0015
0.12 0,9931 2,4636 3,4454
0.14 0,9990 2,4068 3,7823
0.16 0,9975 2,7523 4,7674
0.18 0,9978 2,9100 5,1833
0.20 1,0012 2,9329 5,7425
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YP=0.25
0.02 0,9905 1,0494 1,3366
0.04 0,9857 1,4598 1,3992
0.06 0,9884 1,8147 2,0989
0.08 0,9908 2,0471 2,6121
0.10 0,9921 2,2934 3,1905
0.12 0,9933 2,5413 3,9981
0.14 0,9957 2,6499 4,3914
0.16 0,9977 2,7733 4,8926
0.18 0,9992 2,9282 5,7158
0.20 0,9993 3,1976 7,1059

YP=0.20588
0.02 0,9858 0,9743 1,1775
0.04 0,9834 1,4495 1,7520
0.06 0,9814 1,8316 2,1952
0.08 0,9880 2,0863 3,1540
0.10 0,9900 2,1030 2,7053
0.12 0,9878 2,4669 3,5406
0.14 0,9906 2,7497 4,9152
0.16 0,9972 2,6860 4,6848
0.18 0,9996 2,8356 5,4213
0.20 0,9985 3,2295 7,5611

YP=0.125
0.02 0,9437 1,3460 1,9438
0.04 0,9429 1,8294 2,5717
0.06 0,9456 2,1444 2,7988
0.08 0,9515 2,3621 3,4842
0.10 0,9561 2,6217 4,0773
0.12 1,0131 2,0387 3,4982
0.14 0,9634 3,1603 6,2314
0.16 0,9873 3,0772 7,0350
0.18 0,9754 3,5081 8,1311
0.20 0,9803 3,4800 8,0012

YP=0.10938
0.02 0,9999 0,8582 1,1678
0.04 0,9950 1,3840 1,9839
0.06 0,9938 1,5590 1,8212
0.08 0,9960 1,8727 2,6217
0.10 0,9974 2,0096 2,7001
0.12 0,9981 2,2556 3,3983
0.14 1,0001 2,4253 4,0507
0.16 0,9999 2,8248 5,9333
0.18 1,0017 3,6375 15,6952
0.20 1,0028 2,9581 6,2047

YP=0.05
0.02 1,0141 0,7503 1,1142
0.04 0,9963 1,2630 1,7780
0.06 1,0006 1,4073 1,8053
0.08 1,0003 1,7002 2,3908
0.10 0,9910 2,1383 3,2723
0.12 1,0175 1,9432 3,2799
0.14 1,0024 2,4523 4,5571
0.16 1,0058 2,5032 4,4276
0.18 1,0039 2,9181 6,4823
0.20 1,0159 2,4694 4,0736
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6. CONCLUSION

The first application of the Variational Monte Carlo methods in quantum 
mechanical systems was looked at by McMillan [23] investigating bosonic systems.
VMC methods were extended to study simple Fermi systems [22,24] and were 
developed for finite nucleon systems, and these methods have successfully been applied 
to few nucleon systems [25,26].

In order to obtain properties of many body systems such as nuclear matter, a 
non-ideal gas etc. the many body problem can be reduced a two-body problem, a three 
body-problem, etc. Such a decomposition is not applicable to a N-body system since 
each particle in a N body system is in constant interaction with large number of its 
neighbours. Therefore, one have to use the methods that are more suitable for dense 
systems like nuclear matter. One of these methods is Variational Monte Carlo method.

In this study, as an application of the Variational Monte Carlo method, we have 
calculated radial distribution functions of nuclear matter. In the calculations, we have 
used the Urbana V14 potential for the nucleon-nucleon interaction and included the 
three-body interactions. We have also presented a simple expression for nuclear matter 
RDF. This expression involves 3 adjustable parameters. One important point is that the 
new RDF expression presented in this study may use to obtain the thermodynamics 
properties of nuclear matter in future studies. 
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