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Abstract- Open canals are important water transfer structures used in water resources 
systems. As such, they may require substantial amount of investment depending on its 
length and cross section. Therefore, cross section design should be carried out on an 
optimization basis. Traditionally, optimal sizing of open canal cross sections are 
undertaken by nonlinear optimization techniques such as Lagrange Multipliers. In this 
study, optimum cross sections of different canal geometries are obtained using 
differential evolution algorithm and the findings of these exercises are compared with 
those of given in related literature. It is observed that differential evolution algorithm 
can be well applicable to the problem and capable of giving the global optima.
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1. INTRODUCTION

Open canals are used in water resources systems to transfer large quantity of 
water from a river or another source to where it is used. They are essential elements of 
irrigation and waterpower systems. They are free surface structures, which carry water 
by gravity. An open canal may require substantial amount of investment depending on 
its length and cross section, making the optimal sizing essential. Optimal sizing is to 
find the optimal cross section dimensions at minimum construction cost. 

Nonlinear optimization techniques such as Lagrange Multipliers have 
traditionally been used to undertake optimal sizing of open canal cross sections.  
Several researches under different conditions have been performed into optimal cross 
section design. Majority of this research deals with assessing optimal canal sections of 
different geometries for uniform flow conditions [1], [2], [3], [4]. There are relatively 
fewer number of studies for this issue considering non-uniform flow conditions [5][6]. 
Swamee et al. (2000) have obtained the parameters of an optimal canal cross section 
based on the minimum cost of earthwork, which increases with an increase in 
excavation depth [6].

Differential evolution algorithm (DEA) is one of the evolutionary algorithms 
that can be used for an optimization process. There are several DEA studies for different 
optimization problems including the identification of structural system parameters [7], 
multiple objective reservoir operation problem [8] and mass minimization truss problem 
[9].
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In this study, optimum cross sections of different canal geometries are obtained using 
differential evolution algorithm. The different geometries considered include triangular, 
circular, rectangular and trapezoidal canal sections.

The objective function is in the form of cost minimization. The cost figures 
taken into account are the costs of canal covering and excavation. The findings of 
optimization exercises carried out by differential evolution algorithm are compared with 
those of given in related literature. Based on the findings obtained, it can be stated DEA 
is capable of finding the optimal dimensions for canal cross-sections.

2. DEFINITION OF THE PROBLEM

The solution to an optimization problem aims to find global optima. In the 
particular problem of canal cross section problem, the optimization problem comprises 
an objective function in the form of minimum cost subject to the flow requirements to 
convey a specific discharge in the canal considered. The decision variables, the 
dimensions of canal cross sections, are side slope, bottom width, flow depth, and radius. 
Geometric properties of a generic canal cross section are given in Figure 1.

Figure 1. Generic Type of Canal Section

Given the type of canal lining and slope, the cost function for a lined canal can 
be written as follows:

 daAPC
A
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(1)

where L : unit lining cost in TL/L2, E : unit excavation cost in TL/L3, A : additional 
cost of excavation per unit depth in TL/L4, a: flow area at height η, P: wetted perimeter, 
A: flow area and L: length. Such a total cost expression for a canal assumes that the 
canal is constructed for the same soil conditions and cost of excavation increases with 
the increase in excavation depth. 

Assuming the uniform flow conditions apply in the canal, Manning’s uniform 
flow equation is used to define uniform flow as follows:
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where n: Manning roughness coefficient, A: flow area, R: hydraulic  radius and S: 
bottom slope of canal

The optimization problem for any canal cross section is as follows:

minimize 

 daAPC
A

AEL 
0

(3) 

subject to 
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Several dimensionless parameters can be defined to examine the effects of the 
variables and to compare with the results given in related literature using the length 
scale
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The dimensionless parameters defined are as follows: 
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Using these dimensionless parameters, the optimization problems stated in (3) 
and (4) can be rewritten as follows:
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The optimization problem given in (14) and (15) is arranged for triangular, 
rectangular, trapezoidal and circular canal cross sections, of which geometric 
dimensions are given in Figure 2, 3, 4 and 5 as follows:

Optimization problem for triangular cross section:

Figure 2. Geometric Dimensions for Triangular Cross Section

minimize
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Optimization problem for rectangular cross section:

Figure 3. Geometric Dimensions for Rectangular Cross Section

minimize 
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 
 

0
2

1
3/2

**

3/5

** 



by

yb

n

n (19)

Optimization problem for trapezoidal cross section:

Figure 4.  Geometric Dimensions for Trapezoidal Cross Section

minimize
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Optimization problem for circular cross section:

Figure 5. Geometric Dimensions for Circular Cross Section
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minimize 
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3. THE DIFFERENTIAL EVOLUTION ALGORITHM (DEA)

The differential evolution algorithm (DEA), which was proposed by Storn and 
Price [10], is an evolutionary optimization algorithm like genetic algorithms. 

DEA executes population basis. The individuals constituting population generate 
new populations through mutation, crossover and selection operators. Each individual in 
the population is a vector of D dimension. The dimension of the vector, D, is the same 
number as the number of variables in optimization problem [11].

DEA reaches to optima by the following steps;

1. Initialization

Lower ( ) and upper ( ) bounds of each variables are determined. The initial 
value of the jth parameter of the ith vector is calculated by uniformly distributed via 

(24)

2. Mutation

The solution point that the vector represents moves in solution space by this 
operator. This process can be realized by 3 randomly selected vectors. The mutation 
vector can be obtained by; 

  (25)

F, a positive reel number, is called scale factor. 

3. Crossover

A trial vector is obtained through the crossover of two vectors, mutant vector and 
target vector, as follows:
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(26)

Cr is called crossover probability and takes the values between 0 and 1.

4. Selection

The individuals to form the new generation are selected at this stage. Each trial 
vector obtained through crossover is compared with the target vector. The vector with 
the lowest objective function value survives into the next generation g+1. This process 
is expressed as follows:

(27)

5. Termination Criteria

Since the process is iterative, the termination criteria are normally required to stop 
the process. For this purpose, the sufficiently small difference, namely error, between 
the values obtained or a specific number of iteration are used [12].

4. APPLICATIONS

The optimization problems set forth in Section 2 for four different shapes of 
canal cross sections have been solved by differential evolution algorithm and the section 
variables obtained. During the operation of DEA, some user-defined parameters are 
required. These parameters include the number of individuals in population, NP, scale 
rate, F, and crossover probability Cr. These parameters should be selected in such a way 
that the solution process is speeded up. In this study, following values were used: 
Np=10, F=0.85 and Cr=0.5.

The results obtained in this study by DEA have been compared with those given 
in Aksoy and Sakarya for the same section types.

First of all, classical optimum cross section problem where excavation cost does 
not change with excavation depth, e.g. =0, was solved. This problem was solved in 
Literature by Langrange Multipliers (LM) and the results of such solution are taken into 
account for comparing the results of DEA as shown in Table (1) and (2).

Table 1.  The results of LM and DEA for optimum nondimensional section variables 
for  *A  = 0 

Triangular section Rectangular sectionSection Variables
LM DEA LM DEA

Side slope, m* 1.000 1.000 - -
Bottom width, b* - - 1.834 1.83358
Flow depth, yn* 1.297 1,297 0.917 0.91721



M.E. Turan and M.A. Yurdusev 84

Trapezoidal section Circular sectionSection Variables
LM DEA LM DEA

Side slope, m* 0.577 0.577 - -
Bottom width, b* 1.118 1.117 - -
Flow depth, yn* 0.968 0.968 1.004 1.004
Radius, r* - - 1.004 1.00387

As a second exercise, the problem is solved by DEA for the different values of 
 and  and section variables obtained. Aksoy and Sakarya solved the same problem 

by a numerical optimization (NO) technique. For triangular cross section, the results of 
both DEA and NO have been presented in Figure 6 and 7 as the results for other types 
are not traceable in Aksoy and Sakarya.

(a)

(b)

Figure 6. Variation of (a) optimum nondimensional side slope and (b) normal depth of 
a triangular section with   *L = 1.0
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(a)

(b)

Figure 7. Variation of (a) optimum nondimensional side slope and (b) normal depth of 
a triangular section with *A = 0.5

6. CONCLUSION 

The classical problem of optimal canal cross section design has been revisited. The 
problem is solved by Differential Evolutionary Algorithm for the different types of 
section types including circular triangular, rectangular and trapezoidal shapes. The 
problem is considered the same as that formulated in related literature so as to make 
one-to-one comparisons to see the capability of DEA results of DEA have confirmed 
the results obtained in the literature. Therefore, it has been concluded that DEA can 
successfully be applied to the problem and also is capable of satisfactory results.
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