
Mathematical and Computational Applications, Vol. 16, No. 1, pp. 53-65, 2011.
© Association for Scientific Research

SEARCHING FOR THE SHORTEST PATH
THROUGH GROUP PROCESSING FOR TSP

İbrahim Meşecan1, İhsan Ömür Bucak2, Özcan Asilkan1

1 Epoka University, Computer Engineering Dept., Rruga Durres - Tirana, Albania
2Mevlana University, Computer Engineering Dept, 42003 Selçuklu - Konya, Turkey

imesecan@epoka.edu.al, iobucak@mevlana.edu.tr, oasilkan@epoka.edu.al

Abstract- Thanks to its complexity, Traveling Salesman Problem (TSP) has been one
of the most intensively studied problems in computational mathematics. Although many
solutions have been offered so far, all of them have yielded some disadvantages and
none has been able to claim for the best solution. We believe that better solution could
be obtained through iterative evaluations, until a certain number of islands are reached,
if we could develop an algorithm which grows geometrically. Some algorithms have
suggested random solutions and many suggested using the closest neighbors. In many
cases islands exist in groups or chains in any length. Therefore they can be connected to
any other island rather than the closest one. This can be better identified when we spot
out the patterns and island chains. In this paper, we have searched for the identification
of patterns and chains. We propose an iterative Group Processing (GP) approach which
finds better paths in the 90% of the cases overall as we compare it to Random Logic
(RL) programs and most up-to-date Artificial Neural Network based TSP programs.

Keywords- Group Processing, Traveling Salesman Problem

1. INTRODUCTION

Traveling Salesman Problem is one of the well-known problems in informatics,
and is called an NP complete (completely not possible) problem. The traveling salesman
problem was first challenged by Hopfield as an interconnected network [1]. A salesman
must visit n cities while visiting each city exactly once and finishing at the city he
started from. The cost of journey c(i, j) to travel from city i to city j is given, and the
salesman desires to make the tour whose total cost is minimum [2].

In some other works, the traveling salesman problem is identified to find a
minimum cost (or, shortest path or distance, or minimum time) for a given set of
vertices (cities) and edges (road) that constitute all the candidate cyclic paths. In other
words, the path selected with the minimum cost is known as a Hamilton path which, in
addition, must contain all the cities given, each only once, and begin from the specified
city to which the tour ends [3]. The number of all the cyclic paths for the symmetric
traveling salesman problem is calculated by (n-1)!. n! is approximately equal to

n/ n)nexp()n(212 according to Stirling’s approximation which is a commonly used
to approximate relationship for the evaluation of the factorials of large numbers. It is
evident that this approximation requires an exponential order of times to calculate the
minimum cost or select the shortest path by the blind search. No polynomial time
solution with the order of n is believed to exist because of the reason above, and it is
recognized that the traveling salesman problem belongs to a NP-class problem [3].

İ. Meşecan, İ.Ö. Bucak and Ö. Asilkan54

Assume that there are n cities numbered from 1 to n, and let the first city is the
base-city of the salesman to visit. Apparently, there are (n-1)! possible solutions if one
wants to identify all the solutions. Someone could probably check them systematically,
find the cost for each and every one of these solutions, and finally reach one with the
minimum cost. These, at least, require (n-1)! steps. For example, if there are 21 cities,
the steps required for that will be (n-1)!=20!=2.432x1018.

There are approximately 31,557,600 seconds in every year. And, if every one
billion steps required a second, which is a huge number of operations in a second, then,
one would need 77.094 (at least seventy seven) years of continued calculations. For 101
cities, this number will be equal to 100! = 9.332x10157. It is easier to see how big the
possibility is. Apparently, the exhausting examination of all possible solutions is out of
the question. But the question is: “Whether or not, we can develop an algorithm which
grows geometrically, and thus, we check all the possibilities?”

2. EARLIER METHODS

Some of the earlier methods tried to check all the possibilities that were nearly
impossible to find the solutions. Because of huge number of possibilities, many chose to
try for randomized search. However this one always opens a door for skepticism since
one can never be sure for the best solution. If it is tried more than one, then there is
always a question in mind whether or not there could be a better solution. The following
subsections present some of the earlier algorithms briefly.

2.1. Exhaustive search and Backtracking
 Sometimes the only way to solve a problem is to try all of the possibilities. This

method is okay up to 10 or 15 islands, but more than that amount of islands, this method
will always be slow. Exhaustive search systematically searches for a solution to the
problem from all the options available.

Fig.1: Exhaustive search.

As seen in Figure 1, the second island is selected and all the possible paths with
it are tried thereafter. Upon finishing all those paths, that second island is returned and
replaced with another one; this time all the possible paths with the third one are tried
and it goes on and on.

Going down in a tree corresponds to a forward progress towards creating a more
complete solution; going up in the tree corresponds to backtracking to some previously

n-2 possible
islands

n-2 possible
islands

n-2 possible
islands

n-1 possible
islands

Searching for the Shortest Path Through Group Processing for TSP 55

generated partial solution. It might be worthwhile to proceed forward again from this
point.

Backtracking can be seen a pruned exhaustive search. For example, if a minimal
result is found on a point, and if that minimum is already passed while checking another
possible position, the rest of the operations can be skipped. Therefore, backtracking is
faster version of exhaustive search which could otherwise take many decades to try all
these possibilities. For example, in a city of twenty one, it would take one to five years,
not seventy seven years as in exhaustive search.

2.2. The Use of Inversion (2-opt) to Find an Approximate Solution
Goldberg used inversion to find an approximate solution to DNA computing [5].

This idea has also been applied to the traveling salesman problem. Some other scientists
named this solution as 2-opt [6]. 2-opt is a local search algorithm in which a 2-opt move
delete two edges, thus breaking the tour into two parts, and then reconnect those paths
in the other possible way. This is equivalent to reversing the order of cities between the
two edges [7]. At the outset, all islands are connected randomly as seen in Figure 2:

 a.

 b.

Fig. 2: a. Randomly connected islands at the outset, b. The use of inversion (2-opt) to
find an approximate solution.

Two random islands like A and B in Figure 2 are untied and connected by
inverting their connections. Then, it is checked whether this produces a shorter path or
not. If the new path is shorter, it is accepted. If the new path is longer than the previous
one, it is accepted with a decreasing possibility determined by e(-(dist2-dist1)/λ). Since λ is
defined as 10   and is always decreasing close to 0, the power of exponential term,
δ=(dist2-dist)/ λ, will grow geometrically. Therefore e-δ will result in a geometrically
decaying number after each step.

From such a huge number of possible paths, it is very easy to enter in a wrong
path. Accepting the longer path with a decreasing possibility gives the chance to quit the
wrong path. If the new path again produces a longer path, we would easily come back to
the old one. However, out of the randomization, one can never be sure to find the
shortest path. Therefore, this method is mostly used to find a meaningful shorter path in
a meaningful time space.
2.2.1 Complexity

This program repeats each step 1000 times and uses a constant, say λ, to
decrease the possibility in an exponential manner. λ is started at 1 and is decreased all

B

B

A

C

D

A

C

D

İ. Meşecan, İ.Ö. Bucak and Ö. Asilkan56

the time by another constant η which is set to 0.95. And, this process is repeated while λ
is greater than 0.001 that is equal to a total of 66000 times for each run. To compare the
programs, we repeated this operation n times where n is the number of islands. Hence,
for 50 islands, we try 3 million 300 thousand times.
2.3. Minimum Spanning Tree

The minimum spanning tree starts from an arbitrary root vertex r and grows
until the tree spans all the vertices in V. At each step, a light edge is added to the tree A
which connects A to an isolated vertex of GA=(V, A). By this rule, it only adds the edges
that are safe for A. Hence, when the algorithm terminates, the edges in A form a
minimum spanning tree. Upon forming the minimum spanning tree as in Figure 3, the
TSP chain is called n-constructed and is refined [8].

Fig. 3: Minimum spanning tree.
Again, there are too many possibilities, and it is very easy to fall into a wrong

path which cannot be quitted from it. Furthermore, the initial assumption of selecting
the closest possible island which is supposed to lead to the shortest path is incorrect.
2.4. Artificial Neural Network Solutions

The success in many difficult problems has made the neuro-computing method a
very famous one. Angeniol et al. [9] first applied the Kohonen’s Self Organization
Feature Maps (SOFM or practically SOM) to the TSP problem [8]. In SOM, the
neurons are allowed to move freely around. After each iteration, the current neuron is
moved to another place to produce a better match (i.e., closest match) with its
neighbors.

SOM has been applied to a variety of problems. Thus, many improvements have
been provided to the algorithm based on the application. In one of these presented by
Brocki, Kohonen’s SOM has been applied to the TSP problem [10].
2.4.1 TSP with SOM

In 1975, Kohonen introduced a new type of neural network that uses
competitive, unsupervised learning. This approach was based on WTA (Winner Takes
All) and WTM (Winner Takes Most) algorithms. The most basic competitive learning
algorithm is WTA [11].

When an input pattern is introduced, each neuron’s synaptic weight is
recalculated. The neuron that affects the most is said to be the winner. Therefore, its
synaptic weight is modified. However, WTM has better results because more neuron
synaptic weights are modified during a one-learning-iteration.

a

b

c

d

e

f g

k

a

b

c

d

e

f g

k

a

b

c

d

e

f g

k

a

b

c

d

e

f g

k

Searching for the Shortest Path Through Group Processing for TSP 57

In the beginning the input neurons are placed in a random order and all are
connected to output neurons. By continuously modifying the synaptic weights of the
input neurons, they are brought to their closest island while producing a meaningfully
shorter path.

Fig. 4: Connecting input neurons to the cities.
When each city catches only one node from the output layer, the training is

finished and the optimum path is obtained. Basic SOM algorithm is described as
follows [10]:

procedure train_SOM
 begin
 randomize weights for all neurons
 for (i = 1 to iteration_number) do
 begin
 take one random input pattern
 find the winning neuron
 find neighbours of the winner
 modify synaptic weights of these neurons
 reduce the η and λ (the radius for neighbours)
 end
 end

This algorithm for SOM applied to the TSP problem to match the input and
output layers is far away from the optimum path. Some more improvements need to be
done before achieving the optimum path. As a result, it continuously processes
according to the neighbours and changes the synaptic weights to find the optimum path.
But, in the end, Brocki concludes that SOM approach can generate solutions that are
almost less than 10% worse than the optimal tour [10].

3. GROUP PROCESSING (GP)
The idea for group processing has come out from the fact that “For such a

geometrically growing question, we need to find a solution that can grow geometrically
too, thus, enabling us to check such a huge number of possibilities. The solution has two
main parts:

i. Make island groups starting from 1 until n-1, and then search for the best place
for these groups,

ii. Try to find conflicts and refine them.
3.1. Closest Neighbour Search?

Many people believe that islands should be connected to their closest neighbours
or to one of the close neighbours. Generally, this is an idea for a good start. On the other
hand, once the search is limited, the optimum paths cannot be found. Many scientists
did their research according to the assumption of the closest neighbours [9, 12]. Some
others who, for example, developed α-nearness idea as part of Lin-Kernighan solution

İ. Meşecan, İ.Ö. Bucak and Ö. Asilkan58

assert that 70-80% of the edges which are in the minimum spanning tree are also
included in the optimum paths [6]. Thus, when an edge is included in the minimum
spanning tree, the change in the total length of the minimum spanning tree is the α-
nearness value. On the other hand, this problem is completely random. Because of the
formed groups, any island can be connected to any other island as in the example below.
Here is the list for 12 islands:

 0 288 149 1 270 133 2 288 129 3 256 141

 4 256 157 5 246 157 6 236 169 7 228 169

 8 228 161 9 220 169 10 212 169 11 204 169

We have 12 groups of 3 numbers where the first number is the island number; the
second and the third numbers are x and y coordinates. Then, the optimum tour together
with the island numbers would be like the following one (See Figure 5):

 Fig. 5: A possible optimum tour.

If we calculate the nearest neighbours for the islands, the first seven close
neighbours of the island 8 will be: 7, 9, 6, 10, 5, 11, 4 where 7 is the closest and 4 is the
farthest. For a 12-island set, people may think that the islands should be connected to
their first three or four close neighbours. Nonetheless, it is connected to its fifth and
sixth close neighbours. As can be seen, the islands can also be connected to other farther
neighbours.

Here is another example in Fig. 6 in which islands A and B are connected to
their one of the farthest neighbours.

Fig. 6: Another optimum tour possibility considering the farthest neighbours.

Another well-known example is from TSPLIB, 532 cities of the USA: one island
is connected to its twenty second closest neighbour [6]. Therefore, out of these and
many other examples, we can see that the closest neighbour will not work for many
cases. Firstly, it is important to identify the patterns and island chains, then, obtain the
optimum path. In Group Processing, we try to identify these patterns.
3.2. Step 1 - How Group Processing works?

Before starting out with the details of the algorithm, let us explain a data
structure that we have taken advantage of to reduce the number of possibilities; we use
circular linked lists. Like a string, when you pull from one side, the other side is also

11

10 9 7 6

8
5

 4

3

 1
 2

0

A

B

Searching for the Shortest Path Through Group Processing for TSP 59

affected. Similar to how we omit the rest of the options in backtracking when the
current path length exceeds the current minimum, a circular linked list helps us to
automatically reduce the number of possibilities.

Group Processing, firstly, assumes the initial order as an initial path. Then, one
by one detaches the islands and searches for the best location to attach. Meaningfully,
we place the islands to their closest islands. Then, we repeat the same process for the
groups of 2 islands, groups of 3 islands, etc.

Let us assume that the initial island positions and order as follows: (141 360),
(206 209), (209 295), (320 153), (344 367), (370 208), (374 277), (484 175), (498 229),
(120 343).

Fig. 7: Initial island connection.

It is noted that, normally the lines are straight, but for a better view some are used as
curved. Figure 8 shows the connection upon the first island is detached from its position
(141 360). Thus, the order of the island positions will be as follows: (206 209), (209
295), (320 153), (344 367), (370 208), (374 277), (484 175), (498 229), (141 360), (120
343).

Fig. 8: The order after detaching the island.

After detaching the first island, the best place is sought through searching and the
connection is provided afterward. In this case, the best place is found between the
islands (120 343) and (498 229).

Fig. 9: Reconnecting the island (141 360).

344 367

209 295

498 229

141 360

484 175

374 277
120 343

206 209

320 153
370 208

344 367

209 295

498 229

141 360

484 175

374 277120 343

206 209

320 153

370 208

344 367

209 295

498 229

141 360

484 175

374 277
120 343

206 209

320 153
370 208

İ. Meşecan, İ.Ö. Bucak and Ö. Asilkan60

Then, detaching the island (209 295) (see Fig. 10) rearranges the order as follows: (206
209), (320 153), (344 367), (370 208), (374 277), (484 175), (498 229), (209 295), (141
360), (120 343). Figure 11 shows the reconnection after this detachment.

Fig. 10: The order after detaching the island (209 295).
Upon this detachment, the best place is searched for and the reconnection is provided.
In this case, the best place for it is found between the islands (141 360) and (498 229).

Fig. 11: Reconnecting the island (209 295).
This process is repeated for every island in the ring. After then, group size is

increased. The islands are processed in groups of 1, 2, 3, and finally n-1. In the
following, it is explained in detail how the case of processing in a group of 3 is formed.
Suppose that an initial island connection is given as in Figure 12,

Fig. 12: Processing islands in a group of 3.
Figure 13 shows the connection after Group A elements are disconnected from the
chain.

 Fig. 13: Disconnecting Group A elements.

344 367
209 295

498 229

141 360

484 175

374 277120 343

206 209

320 153

370 208

344 367
209 295

498 229

484 175

374 277120 343

206 209

320 153

370 208

141 360

344 367

209 225 498 216

141 360

484 175

325 215

120 343

206 209
320 198 330 203

Group A

Searching for the Shortest Path Through Group Processing for TSP 61

Here, the islands in Group A are treated as if it was a single island. Thus, a better
place for it is searched and they are moved or placed there.

 Fig. 14: Placing Group A elements back to the chain.
3.3. Step 2 – Randomization

The nature of this problem is completely random. There may be groups of any
size starting from any point. Therefore, this group process is handled from a group of 1
until n-1. This helps us to catch these groups and place them to their best place.
However, this is not enough to catch the best tour. When placing a group, there may be
many places giving the same minimum result for this current moment. Normally, any of
these minimum results may lead us to the exact solution. But, we either select the first
minimum or the last minimum.

The best catch might be any other one. In linear search, we can catch either the
first or the last occurrence, and there is no difference between them. If we try all these
possibilities, it will be no different from backtracking. For this purpose, we change the
start position to catch the other possibilities. As we use a circular linked list, while we
change the start position, we will be able to catch the other skipped options.

In our case, as in Figure 15-a, when we start from position 0 in a circular linked
list, we will catch the minimum value in position 10. After checking the possible paths
in the first, second or in third trials, by moving the start position, we can catch the item
in position 0 (Fig. 15-b).

While we continue to move our start position, the element in position 4 can be
caught as the minimum (Figure 15-c).

 Fig. 15: Catching more possibilities by changing the start point.

344 367

209 225 498 216

141 360

484 175

325 215

120 343

206 209
320 198 330 203

 0 1 2 3 4 5 6 7 8 9 10 11 12

Start Pos Min Pos

8151 5 8913 6524

(a)

Array positions

Start PosMin Pos

8151 5 8913 6524

(c)

Start PosMin Pos

8151 5 8913 6524

(b)

İ. Meşecan, İ.Ö. Bucak and Ö. Asilkan62

For sure, this is not a constant situation and all the values are instantly changing. But in
some other trials we will have similar situations and changing the start position will
help us to catch these possibilities.

3.4. Step 3 – Refining the steps
Changing only the start position will not be able to catch all the possibilities.

Thanks to the random nature of the problem, there could be many places that give us the
same result for any group. Because of this, many people used random functions.
However, using random functions have presented many drawbacks. Instead of
randomization, we have developed a different method. After each iteration for the
groups, we search for the longest edge; because any incorrect connection will cause an
edge to be longer than its normal form. We search and then find a better place for it.
One might think that this edge might be the real long edge. If so, the program will not
be able to find any better position. Thus, we repeat this longest edge operation from 1 to
the square root of n. Therefore, on the first pass, we search and replace only one longest
edge, and on the second pass, we search and replace two longest edges, etc.

3.5. Complexity
iii. The inner most procedure WalkAround goes through the islands for the given

group size. For each group it starts from the beginning until the end to search
for a better position; therefore the procedure is called n times. In the beginning
we have the group size 1, thus overall in the example we will have 100 groups.
This process is executed for each group giving us the complexity as n*n/2.

iv. Procedure CheckOne calls WalkAround for all group size starting from an
initial island. After processing each group, it also processes for the n-longest
edges. The group size is incremented from 1 to n-1. This means that
WalkAround procedure is called n-1 times.

WalkAround is a linked list application. Thus, when searching a better position
for a group of islands, we start and search from the initial island until the final one. But
after the first island, group positioning of the initial and final islands change place. This
is a drawback. Thus WalkAround procedure may not check for all the groups. As a
result, we are not able to check n times. But, running the CheckOne procedure i+5 times
for this group size enables us to run WalkAround (i+5) times, so that for this group size
starting from the beginning, we check better places for all island groups. By this way,
this procedure CheckOne calls WalkAround (i+5)*(n-1) times where i is a counter
increasing from 1 to the square root of n and is explained in the 4th step. (i+5) gets the
numbers from 6 to 15 but it cannot be calculated as an extra multiplier because it is a
complementary of the WalkAround n complexity.

iii. CheckAll calls procedure CheckOne by changing the start position n times.

iv. And finally, CheckAll is called, by the main function, square root of n times
for changing the longest n edges.

Searching for the Shortest Path Through Group Processing for TSP 63

As a result, the complexity will be 44 nn . This is an exponentially growing
complexity and is still huge. But compared to n!, it is very small.

4. COMPARISON OF THE ALGORITHMS
For comparison, we have had twenty island sets with different number of

islands. After each run, we have noted the length of their best path. Then, we have
checked for the winner as based on the integer part of the result by skipping the floating
point parts. Winner of every check got one point. When they have had the same integer
length, we have assumed both as the winner. In the end, we have taken the sum of the
total paths and counted the number of wins. Here are the results presented in Table 1:

Table 1: Comparison of GP and RL programs.
Best Distance Who is winner?

#Trials
#Islands RLS GP RLS GP

1 40 1810 1782 0 1

2 40 1648 1648 1 1

3 40 1887 1862 0 1

4 40 1724 1724 1 1

5 30 1527 1527 1 1

6 30 1560 1560 1 1

7 70 2173 2137 0 1

8 70 2203 2137 0 1

9 80 2480 2407 0 1

10 80 2495 2413 0 1

11 80 2500 2430 0 1

12 80 2396 2347 0 1

13 80 2497 2354 0 1

14 100 3617 3588 0 1

15 100 3992 3891 0 1

16 100 2700 2723 1 0

17 100 2778 2743 0 1

18 100 2697 2702 1 0

19 100 2796 2752 0 1

20 100 3887 3602 0 1

Total Distance 49367 48329 Winning Percentage

Percentage? 1.021 30 90

where,
#Trials: Number of trials
Islands: Number of islands
RLS: Random logic solution using inversion (2-opt) method
GP: Group Processing Solution

As seen from Table 1, out of the 20% of the cases, GP and RLS have produced
similar results. But in the 70% of the cases GP has found better results. In other words,
GP has found very good paths in 90% of the total cases. Moreover, GP has produced
2.1% shorter paths in the total.
To be able to compare our program with the Artificial Neural Network based TSP
programs, we have done a search and found several programs. Out of this search, the
one from sourceforge.net [12] seemed the most serious and up-to-date work in this field

İ. Meşecan, İ.Ö. Bucak and Ö. Asilkan64

(August, 2008). It uses NeuronDotNet 3.0 [13] (Release Date: August, 2008) Kohonen’s
SOM and itself have also produced better paths when compared to other ANN programs
available to us such as the one by Lalena in [14].

Thus, we again produced twenty different input sets containing different number
of islands and checked the results as follows:

Table 2: GP vs. ANN program from sourceforge.net.

where,
#Trials: Number of trials
Islands: Number of islands
ANN: Artificial Neural Network Solution
GP: Group Processing Solution

This time, we had better results. In total, GP has produced 2.7% shorter paths.
Out of 95% of the whole cases, it was able to find very good paths. In 15% they found
the same length path. Finally, the ANN was able to produce shorter path in just one case
(5%).

5. CONCLUSION
Our main purpose was to find a solution to the question: “Since it is impossible

to check all the possibilities one by one, can we develop an algorithm which grows
geometrically, and thus, we check all the possibilities?” Finally, we developed such an
algorithm which worked better than some famous algorithms.

In random logic one will always have a doubt, “if I run again, will it produce a
better path?” Thus, one can never be sure if this path is good or if there is a better path.

Best Distance Who is winner?
#Trials

Islands ANN GP ANN GP

1 40 568 540 0 1

2 40 541 538 0 1

3 40 508 508 1 1

4 40 513 513 1 1

5 40 482 470 0 1

6 60 614 614 1 1

7 60 637 615 0 1

8 60 584 587 1 0

9 60 664 608 0 1

10 80 711 706 0 1

11 80 753 709 0 1

12 80 748 740 0 1

13 80 697 683 0 1

14 80 740 712 0 1

15 80 730 719 0 1

16 100 797 754 0 1

17 100 815 802 0 1

18 100 838 820 0 1

19 100 791 772 0 1

20 100 789 759 0 1

Total Distance 13520 13169 Winning Percentage

Percentage? 1.027 20 95

Searching for the Shortest Path Through Group Processing for TSP 65

Backtracking cannot be used for the questions that have more than twenty
islands, because it takes a lot of time. Kohonen’s SOM algorithm, like many others,
does not claim to solve for the best solution. Instead, it aims for producing an acceptable
solution in a meaningful time. It processes the islands according to their closest
neighbours. To our opinion, Kohonen’s SOM lacks the idea of processing island in
groups. Moreover, ANN solutions also use random selection.

However, our algorithm does not use n!, because the islands are being processed
in groups, and we search for better positions for the island groups. This takes less time
to process as compared to the backtracking and exhaustive search algorithms. On the
other hand, since it is not a random logic, one might know that in the next run, it will
not produce a different path. Therefore, we have the advantage of backtracking and
random logic in one program.

As it can be seen from the tables 1 and 2, the GP approach can find better paths
in the 90% of the cases, and we achieve this in an iterative way.

6. REFERENCES
[1] J.J. Hopfield and D. Tank, Neural Computation of Decisions in Optimization
Problem, Biological Cybernetics, 5, 1994
[2] T.H. Cormen, C.E. Leiserson., R.L. Rivest, and C. Stein, Introduction to Algorithms,
2nd Edition, The MIT Press, McGraw-Hill, 2001
[3] Y. Li, Traveling Salesman Problem Based on DNA Computing, Third IEEE
International Conference on Natural Computation, 4, 28-34, 2007
[4] R. Takahashi, A Hybrid Method of Genetic Algorithms and Ant Colony
Optimization, International Conference on Machine Learning and Applications, 81-88,
2009
[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Pub. Co., 1989
[6] K. Helsgaun, An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic, European Journal of Operational Research, 126, 106–130, 2000
[7] I. Mavroidis, I. Papaefstathiou, D. Pnevmatikatos, Hardware Implementation of 2-
opt Local Search Algorithm for the Traveling Salesman Problem, 18th IEEE/IFIP
International Workshop on Rapid System Prototyping, 41-47 , 2007
[8] K. Fujimura, H. Tokutaka, S. Tanaka, T. Maenou, and S. Kishida, The optimization
for TSP using SOM method of many cities (e.g., 532 cities in USA), Tottori University-
Japan, 1997
[9] B. Angeniol, G. De-La-Croix, and J.-Y. Le-Texier, Self-organizing feature maps and
the Traveling Salesman Problem, Neural Networks, 1. 289-293. 1988
[10] L. Brocki, Kohonen Self-Organizing Map for the Traveling Salesperson Problem,
Polish–Japanese Institute of Information Technology, 2007
[11] T. Kohonen, Self-Organizing Maps, Berlin: Springer, 2001
[12] http://sourceforge.net/projects/neurondotnet/files/
http://neurondotnet.freehostia.com/download.html Program last updated: Aug, 2008.
Last Viewed April, 2010
[13] http://neurondotnet.freehostia.com/manual/ Program last updated: Aug, 2008 Last
Viewed on April 2010
[14] M. Lalena, http://www.lalena.com/AI/Tsp/ release date: 2006. Last viewed Apr,
2010

