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Abstract- In this paper, a robust sensor fault detection and isolation (FDI) method 
based on the unknown input observer (UIO) approach is presented. The basic principle 
of unknown input observers is to decouple disturbances from the state estimation error. 
A single full-order observer is designed to detect sensor faults in the presence of 
unknown inputs (disturbances). By doing so, we generate a residual, a weighted output 
of the state estimation error, decoupled from disturbances. The resulting robust (in the 
sense of disturbances) residual can be used for fault detection. Although this scheme has 
successful fault detection, using one observer is not successful in fault isolation. 
Therefore, a robust sensor fault isolation observer scheme is proposed. In order to 
evaluate its ability, the presented method is adopted to detect and isolate sensor faults of 
a highly nonlinear dynamic system. The faulty behavior of output sensors in a jacketed 
continuous stirred tank reactor (CSTR), around operating point, is investigated. 
Simulation results show that model uncertainties and disturbances can be distinguished 
from a response to a sensor fault.
Key Words- Robust Fault Detection and Isolation, Unknown Input Observers, 
Disturbance decoupling

1. INTRODUCTION

In the real world, no system can work perfectly at all time under all conditions. 
In chemical plants faulty sensors may cause process performance degradation (e.g., 
lower product quality) or fatal accidents (e.g., temperature run away) [1]. A report 
estimates that the loss to petrochemical industries in the U.S. alone is $20 billion/year 
[2]. While, petrochemical plants are becoming larger, loss and maintenance costs will 
increase. Besides the economic loss, irreparable damage to human operators should be 
considered. Therefore, it is essential that a fault detection scheme can be developed so 
as to be able to detect and identify possible faults in the system as early as possible [3]. 
Then, the system can be maintained and kept reliable by means of this early warning 
enabling repair or replacement to take place at the earliest or most convenient time, with 
the minimum of loss of time or productivity. Today, fault detection and diagnosis have 
become inseparable parts of modern complex systems.

Existing fault detection approaches can be roughly classified into model-free 
approaches, i.e., approaches based on statistical analysis, neural networks, and/or expert 
systems; and approaches based on the analytical redundancy, resorting to the available 
mathematical model of the process [4]. Statistical techniques do not require a model of 
the system but only a good database of historical data regarding normal operating 
conditions is needed, since statistical tests on the measured data are used to detect any
abnormal behavior. This is, of course, the main disadvantage of these methods in that 
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they need a large amount of plant data that are collected along a quite large window of 
operating time and are used to construct a statistical model of the process [5].

Model-based fault detection and isolation (FDI) techniques use mathematical 
models of the monitored process and extract features from measured signals, to generate 
a fault indicating signal which is called a residual. Whereas mathematical models are 
necessary for control purposes, model-based FDI technology has attracted remarkable 
attention in modern complex systems during the last three decades [3].

There are a great variety of FDI methods in the literature [3, 4, 6-9]. Among model-
based analytical redundancy approaches, observer-based schemes have been 
successfully adopted in a variety of application fields. The Extended Kalman filter 
(EKF) is one of the most popular model-based techniques used for fault detection and 
diagnosis in chemical processes [10-13]. Although successful applications of this tool 
have been reported in the literature for fault detection and diagnosis in chemical 
processes, the EKF contains several flaws that may seriously affect its performance. 
Therefore, practical applications of EKF are still very limited [14]. Some of EKF’s 
inconvenience can be overwhelmed using the unscented Kalman filter (UKF) [15]. 
However, model-based FDI is built upon a number of idealized assumptions, one of 
which is that the mathematical model used is a faithful replica of the plant dynamics [6]. 
There are, of course, disturbances and model uncertainties unavoidable for any practical 
system. Therefore, it is essential in the design of any fault diagnosis system to take these 
effects into consideration, so that fault diagnosis can be done reliably and robustly. 

The goal of a robust FDI is to discriminate between the fault effects and the effects 
of uncertain signals and perturbations. Indeed, one of the known successful robust fault 
diagnosis approaches is the use of the disturbance decoupling principle [6], in which the 
residual is designed to be insensitive to unknown disturbances, whilst sensitive to faults. 
For this purpose, Frank and Ding developed the unknown input fault detection observer 
for linear systems which can be designed by use of the Kronecker canonical form [7, 8]. 

As discussed earlier, in the EKF-based method, the bias in the residuals resulted 
from modeling uncertainties and disturbances can be misinterpreted as a response to a 
fault in the sensor. In spite of the importance of robust FDI, the issue of robustness has 
not been sufficiently addressed for chemical processes fault detection and isolation in 
the literature [1, 5]. Sotomayor & Odloak, designed a robust FDI scheme based on UIO 
for tow chemical processes, but in their work robustness to disturbance and uncertainty 
has not been shown [5]. The objective of this paper is to design a robust sensor fault 
detection and isolation scheme for a chemical process. An unknown input observer is 
designed for a linearized model of jacketed CSTR. The ability and performance of the 
UIO is investigated for abrupt fault detection and isolation in a highly nonlinear 
chemical process. It is shown that this method can discriminate disturbance and a 
certain degree of model uncertainty from faulty sensors.

2. FAULT DETECTION OBSERVER
Consider a system with additive disturbances described by the following equations:

)()(

)()()()(

tCxty

tdEtButxAtx




(1)
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where ntx )(  is the state vector, mty )(  is the output vector, rtu )(  is the 

input vector, and qtd )(  is an unknown scalar function representing the disturbance. 
Note that matrices A, B, and C correspond to the state-space description of the linear, 
time-invariant system.

Consider an observer of the form:

)()()(ˆ

)()()()(

tHytztx

tKytTButzFtz




(2)

Here ntx )(ˆ  is the estimated state vector and ntz )(  is the state of the 
observer. The observer state-space matrices F, T, K, and, H will be designed to de-
couple the disturbance from the state estimation error, )(ˆ)()( txtxte  . The state 
estimation error is governed by the following equation:

)()()()]([

)(])([

)()]1([)()()(

12

1

tEdIHCtBuHCIT

tyHCKHCAAK

tzCKHCAAFteCKHCAAte






(3)

where .21 KKK 
By definition, an observer is defined as UIO for the system defined by (1) if its state 

estimation error vector e(t) approaches zero asymptotically, regardless of the presence 
of the unknown inputs (disturbances) in the system [6].

To synthesize UIO, the following relationships must hold for the observer matrices 
F, T, K, and H:

FHK

CKHCAAF

HCIT

EIHC







2

1

0)(

(4)

Given these relationships, the state estimation error reduces to:

)()( teFte  (5)

By selecting a stable F, e(t) will be made to approach zero asymptotically. 
Therefore, according to the definition, an unknown input observer is designed by first 
selecting a stable F and then solving equations (4) - (5).

Theorem 1: Necessary and sufficient conditions for the observer (2) to be a UIO for 
defined system in (1) are [6]:

)()()( ErankCEranki 

),()( 1ACii is a detectable pair, 

where CACECECEEA TT )(])[(A 1
1

 .
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Note that in equation (4), the matrix K1 (that stabilizes matrix F) is not unique. This 
design freedom can be used to generate a directional residual for fault isolation.

The observer described by equation (2) is illustrated in Fig. 1. A flow chart that 
describes the UIO design procedure is depicted in Fig. 2.

Fig. 1: Structure of a full-order UIO.

2.1. Robust sensor fault detection and isolation scheme [6]
Fig. 3 depicts a robust sensor fault detection and isolation scheme which also 

includes a general unknown input observer (GUIO). The GUIO generates the residuals 
that are used to detect faults in sensors.

Assuming that all actuators are fault-free, the system subject to sensor faults can be 
expressed as:

sftCxty

tdEtButxAtx




)()(

)()()()(
(6)

where m
s Rf  is an immeasurable vector considered as an additive bias resulting 

from sensor faults. Then the following vectors can be defined as: 

sjjj

j
s

jj

fxcy

fxCy




(7)

where n
j Rc  1 is the jth row of the matrix C , nmj RC  )1(  is obtained from C  by 

deleting the jth row jc , jy  is jth component of y and 1 mj Ry  is obtained from the 

vector y  by deleting the jth component jy . Then, m  UIO-based residual generator is 

constructed as:

jjjjjj

jjjjjj

zCyHCIr

tyKtBuTtzFtz





)(

)()()()(
(8)

In the generalized observer scheme (GOS), the following conditions must be 
satisfied to design UIOs:
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Fig. 2: Flowchart of the UIO design.
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Each residual generator is driven by all inputs and all outputs except one output. 
When all actuators are fault-free and a fault occurs in the jth sensor, the residual will 
satisfy the following isolation logic:

mjjkforTr

Tr

k
SFI

k

j
SFI

j

,,1,1,,2,1  


(10)

where j

SFIT ’s are isolation thresholds and jr ’s are the Euclidean norms of the 

residuals.

Fig. 3: A robust sensor fault detection and isolation scheme.

3. SIMULATION RESULTS OF THE FDI METHODS APPLIED TO A CSTR
In this section, the simulation results of the generalized unknown input observer 

scheme (GUIOS) will be demonstrated. This method is a commonly accepted robust 
FDI scheme. In order to evaluate the performance of the proposed method compared to 
the Leunberger observer, it is applied to a highly nonlinear CSTR model explained in 
[16].

3.1. Process description
This is a highly nonlinear dynamic system describing the behavior of a non-

adiabatic CSTR in which an irreversible highly exothermic chemical reaction (A→B) 
takes place. The reactor’s wall significantly affects the system dynamics and therefore 
has also been taken into account.

3.2. Dynamic process model
The corresponding model leads to the following set of ODEs in a normalized and 

dimensionless form:
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with the system state vector defined as:
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,
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where AC  is the concentration of reactant A, RT  the reactor temperature, WT  the wall 

temperature, and JT  is the jacket temperature. The unit of AC  is mol/m3 and the unit of

RT , WT  and JT  is K.

The input vector is:

][
,

,

,0

,00

,0

,00

,

,

,

,0

refJ

refJJ
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refJJ

ref

ref

refR
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FF

T

TT

T

TT

F

FF

C
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u


 (13)

where 0AC  is the feed concentration of reactant A, RF  the flow rate, 0T  the feed 

temperature, 0JT the inlet jacket temperature, and JF  is the coolant flow rate. The unit 

of 0AC  is mol/m3 and the unit of 0T  and 0JT  is K, and the unit of RF  and JF  is m3/s. 

The corresponding reference values are:
3

,,0 /3 mmolCC refArefA  , smF refR /1060 35
,

 , smF refJ /1015 34
,

 , 

smF refR /1060 35
,

 , KTTTTT refJrefrefJrefwrefR 298,0,0,,, 

The measurement model is assumed to be:


















1000

0010

0001

CwithCxy (14)

that is, measurements of the wall temperature 3x  are not available. Table 1 

summarizes the model parameters used in the present work. The model has three steady 
states which are represented in Table 2.

3.3. UIO design and simulation results for sensor fault detection
Linear model of the system, which is obtained by linearizing the system around 

High-temperature stable equilibrium point, is considered for the design procedures. The 
system matrices are:
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





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
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
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A
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
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

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

0.2302-0000

00000
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B


















1000

0010

0001

C

This approach is based on the assumption that the disturbance distribution matrix E
is known a priori. Therefore, disturbance distribution matrix is assumed as,

.]1111[ TE 

To start the design process, condition (i) of Theorem 1 (Fig. 2), is first verified by 
observing that rank(E)= rank(CE)= 1. Then the matrices H, T and A1 are computed as,

TABLE 2. Steady states

LOW-TEMPERATURE STABLE UNSTABLE High-temperature stable

1x -0.0140582 -0.37748 -0.97640

2x 0.0068168 0.18304 0.47345

3x 0.0061321 0.16465 0.42590

4x 0.0054473 0.14627 0.37834

TABLE 1. Model parameters

Parameter EXPRESSION VALUE Unit

1p
R

refR

V

F , 210333.3  1s

2p 0k 710084 . 1s

3p
refR
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T
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
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,
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
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WCV
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pW

iT
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)(


975. 1s

7p
WCV

hA
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eT

)(

)(


975. 1s

8p
J

refJ

V

F ,
11067.1  1s

9p
JpJ

eT

CV

hA

)(

)(


33.1 1s
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
















0.33330.33330.3333

0.33330.33330.3333

0.33330.33330.3333

H , 





















0.666700.3333-0.3333-

0.3333-10.3333-0.3333-

0.3333-00.66670.3333-

0.3333-00.3333-0.6667

T ,


















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0.8867-0.66570.16400.2068-

6.413312.6043-6.13400.2068-

0.44330.0013-0.05181.7923

0.44330.6643-0.2159-1.5855-

1A .

Condition (ii) of Theorem 1 is also satisfied because the observability matrix is full 
rank, thus, the pair (C,A1) is observable. Therefore, the UIO can be constructed by using 
the following values of F and K.




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


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





1.6421-0.66570.2339-0.3930-

6.367712.6043-6.11620.1880-

0.04540.0013-0.9045-1.3587

0.25710.6643-0.6495-2.1854-
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
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










0.22100.1365-0.3482-

0.0572-0.0850-0.1216-

0.56401.12240.5997

0.8945-0.6471-0.4808-

K

Three different scenarios will be considered. In the first case, it is assumed that the 
sensor measuring the concentration of reactant A (CA) is damaged (case A). The 
measured value is is suddenly deviated +10% from the normal measurement after 50 
seconds elapsed from running of the process. In the second case, a similar fault is 
occurred in the second output which is measuring the reactor temperature (TR), (case B). 
In third case, similar fault is occurred in the sensor measuring jacket temperature (Tj), 
(case C).

All cases have been simulated and residuals have been achieved. The simulation 
result of case A is illustrated in Fig. 4. For the sake of space, we omit the respective
graphics of cases B and C as the residuals behave similarly. As it can be seen in this 
figure, successful fault detection has been achieved. However, this scheme is not 
successful in fault isolation. Therefore, as discussed earlier, a robust sensor fault 
isolation scheme is proposed for fault isolation.
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3.4. UIO design and simulation results of the sensor fault detection and isolation
The fault isolation problem is to locate the fault or to determine which sensor has 

failed. In this study, a structured residual set in which each residual is sensitive to 
certain group of faults and insensitive to others, is designed for fault isolation. The 
Generalized Observer Scheme (GOS) method allows one to detect the faulty sensor by 
checking if the residuals have exceeded the predefined thresholds. 

To start the design process, the conditions of Theorem 1 are checked. Since the rank 
condition (rank (CjE) = rank (E) for (j=1,2,3), is satisfied, then the full set of UIOs 
exist.  Matrices Hj, Tj for (j=1,2,3),and A1 are computed. For all observers the pairs 
(Cj,A1) are observable. Therefore, Fj and Kj (j=1,2,3) are computed. Simulations show
that this scheme is successful in both fault detection and isolation. Figures 5 to 7 show 
the residuals.

1.1. Robustness evaluation
From the above simulation results, one may see that the fault detection and isolation 

scheme is robust to nonlinearity in d(t). In the following, robustness with respect to 
parameter variations is investigated. The robustness of UIOs to process parameter 
variations can be evaluated by the simulation in which matrix A is changed to:

.

1.4630-1.463000
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
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The residuals for all cases have been obtained. For the sake of space, we only show 
simulation result of case A in Fig. 8. From these results one can conclude that the robust 
FDI scheme can reliably detect and isolate faulty sensors even in the presence of 
process parameter mismatch. In other words, model uncertainties can be distinguished 
from a response to a fault in the sensor.

1. CONCLUSIONS
In this paper robust sensor fault detection and isolation was presented. Robustness of 

the observers with respect to external disturbances is ensured using unknown input 
observers. The presented method is applied to a continuous stirred tank reactor (CSTR). 
Several simulations in the presence of external disturbances and different classes of 
faults have been performed. The simulation results confirm the robustness and 
effectiveness of the proposed scheme for fault detection in the presence of external 
disturbances. It is also shown that a certain degree of model uncertainties can be 
distinguished from a response to a fault in the sensor.
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