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Abstract- This paper presents a numerical method for the approximate solution of mth-
order linear delay difference equations with variable coefficients under the mixed 
conditions in terms of Laguerre polynomials. The aim of this article is to present an 
efficient numerical procedure for solving mth-order linear delay difference equations 
with variable coefficients. Our method depends mainly on a Laguerre series expansion 
approach. This method transforms linear delay difference equations and the given 
conditions into matrix equation which corresponds to a system of linear algebraic 
equation. The reliability and efficiency of the proposed scheme are demonstrated by 
some numerical experiments and performed on the  computer algebraic system Maple.
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1.INTRODUCTION

Orthogonal polynomials  occur often as solutions of mathematical and physical 
problems. They play an important role in the study of wave mechanics, heat conduction, 
electromagnetic theory, quantum mechanics and mathematical statistics. They provide a 
natural way to solve, expand, and interpret solutions to many types of important delay 
difference equations. Representation of a smooth function in terms of a series expansion 
using orthogonal polynomials is a fundamental concept in approximation theory, and 
forms the basis of spectral methods of solution of delay difference equations. Laguerre 
polynomials )(xLn constitute complete orthogonal sets of functions on the semi-infinite 

interval ),0[  . In this paper, we are concerned with the use of Laguerre polynomials to
solve delay difference equations. In recent years, the studies of difference equations, i.e. 
equations containing shifts of the unknown function are developed very rapidly and 
intensively. It is well known that linear delay difference equations have been considered 
by many authors[1-11]. The past couple decades have seen a dramatic increase in the 
application of delay models to problems in biology, physics and engineering[12-15].   In 
the field of delay difference equation the computation of its solution has been a great 
challenge and has been of great importance due to the versatility of such equations in 
the mathematical modeling of processes in various application fields, where they 
provide the best simulation of observed phenomena and hence the numerical 
approximation of such equations has been growing more and more. Based on the 
obtained method, we shall give sufficient approximate solution of the linear delay 
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difference Eq.(1). The results can extend and improve the recent works. An example is 
given to demonstrate the effectiveness of the results.In recent years, Taylor and 
Chebyshev approximation  methods have been given to find polynomial solutions of 
differential  equations by Sezer et al. [16-22].

In this study, the basic ideas of the above studies are developed and applied to the mth-
order linear delay difference equation ( which contains only positive shift in the 
unknown function) with variable coefficients[23,p.228,p.229]
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where )(tPk  and )(tf  are analytical functions; irkrk andba ,    are real or complex

constants. The aim of this study is to get solution as truncated Laguerre series defined 
by
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where )(tLn   denotes the Laguerre polynomials, )0( Nnan   are unknown 

Laguerre polynomial coefficients, and N is chosen any positive integer such that
mN  .

The rest of this paper  is organized as follows. We describe the formulation of  Laguerre
polynomials required for our subsequent development in section 2. Higher-order linear 
delay difference equation with variable coefficients and fundamental relations are 
presented in  Section 3. The new scheme are based on Laguerre collocation  method. 
The method of finding  approximate solution is described in Section 4. To support our 
findings, we present result of  numerical experiments in Section 5. Section 6 concludes 
this article with a brief summary. Finally some references are introduced at the end.

2. PROPERTIES OF THE LAGUERRE POLYNOMIALS

A total orthonormal sequence in ],(2 bL   or ),[2 aL  can be obtained from such a 

sequence in  ),0[2 L  by transformations t=b-s and t=s+a, respectively. We consider 

),0[2 L . Applying the Gram-Schmidt process to the sequence defined by
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That is
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Explicit expressions for the first few Laguerre polynomials are
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The Laguerre polynomials )(tLn  are solutions of the Laguerre differential equation

                                    0)()()1()(  tnLtLttLt nnn [24]                                          (6)

In the present application, an approximate solution in terms of linear combination of 
Laguerre  polynomial is assumed of the following form:
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3. FUNDAMENTAL  RELATIONS

3.1. General fundamentals

Let us consider the mth-order linear delay difference  equation with variable coefficients 
(1) and find the matrix forms of each term in the equation. First we can convert the 
solution )(ty   defined by a truncated Laguerre series (3) to matrix forms

                                  AL )()( tty  , AL )()( ktkty                                              (7)
where  
                                    )()()()()( 210 tLtLtLtLt NL                                    (8)
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By using the expression (8) we find the corresponding matrix relation as follows
                                )()( tt TT XHL     and  Ttt HXL )()(                                          (10)
where
                                                        ]1[)( Nttt X                                                   (11)
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Then, by taking into account(10) we obtain
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                                                     1))()(()(  ttt HLX                                                   (13) 
To obtain the matrix )( kt X  in terms of the matrix )(tX , we can use the following 
relation:
                         X(t)= [1  t  t2… tN],  X(t+k)=[1  t+k  (t+k)2  … (t+k)N]                       (14)
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Consequently, by substituting the matrix form (10) into (7), we have the matrix relation
of solution
                                 AHXAL Tktktkty )()()(                                            (17)
and by means of (15), the matrix relation is
                                     AHBXAL TT
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3.2. Method of solutions

In this section, we consider high order linear delay difference equation in(1) and 
approximate to solution by means of finite Laguerre series defined in (3).The aim is to 
find Laguerre coefficients, that is  the matrix A. For this purpose, substituting the matrix 
relations (18) into Eq.(1) and then simplifying, we obtain the fundamental matrix 
equation
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By using in Eq. (19) collocation points it  defined by

                                              Nii
N

b
ti ,...,1,0,                                                         (20)

we get the system of matrix equations 
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Hence, the fundamental matrix equation (22) corresponding to Eq. (1) can be written in 
the form
                              FWA  or  ][ FW; ,  ][ , jiwW , Nji ,...,1,0,                            (23)

where     
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Here, Eq. (23) corresponds to a system of ( 1)N   linear algebraic equations with 

unknown Laguerre coefficients Naaa ,...,, 10 . We can obtain the corresponding matrix 

forms for the conditions (2), by means of the relation (7), 
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On the other hand, the matrix form for conditions can be written as
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To obtain the solution of Eq. (1) under conditions (2), by replacing the row matrices 
(26) by the last m  rows of the matrix (23), we have the new augmented matrix,
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Thus the matrix A  (thereby the coefficients 0 1, , , Na a a ) is uniquely determined. Also 

the Eq.(1) with conditions (2) has a unique solution. This solution is given by truncated 
Laguerre series (3). We use the  relative error  to measure the difference between the 
numerical and analytic solutions.

  We can easily check the accuracy of the method. Since the truncated Laguerre 
series (3) is an approximate solution of Eq.(1), when the solution )(tyN and its 

derivatives are substituted in Eq.(1), the resulting equation must be satisfied 
approximately; that is, for   ,...2,1,0],,0[  qbtt q
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qtE  10)(   ( qk  positive integer). If max 10 10qk k   ( k  positive integer) is 

prescribed, then the truncation limit N  is increased until the difference ( )qE t  at each of 

the points becomes smaller than the prescribed 10 k . On the other hand, the error can be 
estimated by the function 
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If 0)( tEN , when N  is sufficiently large enough, then the error decreases.

4. ILLUSTRATIVE EXAMPLE

In this section, several numerical examples are given to illustrate the accuracy and 
effectiveness properties of the method and all of them were performed on the computer 
using a program written in Maple9. The absolute errors in Tables are the values of 

)()( xyxy N  at selected points.

Example1.
Let us first consider the  second order linear delay difference equation with variable 
coefficients
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matrix equation of the problem is defined by 
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TTT HXBPHXBPXHPW 22110 

where the matrices are defined by [24]. If these matrices are substituted in (22), it is 
obtained linear algebraic system.This system yields the approximate solution of the 
problem. We display  a plot of absolute difference exact and approximate solutions in 
Fig.1 and error functions for various N  is shown in Fig.2. Table1 shows solution of the 
problem for various N. The exact solution of this problem is 12  ty t .

            Table1
            Error analysis of Example 1 for the t value 

   

                                       

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.9

1.92

1.94

1.96

1.98

2

2.02
N=7

N=8
N=9

Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-4

N
e
=7

N
e
=8

N
e
=9

          Fig.1.Numerical and exact solution                    Fig.2.Error function of Example1 for various N.
                     of the Example1 for N=7,8,9

Example2.
Let us find the Laguerre series solution of the following linear delay difference equation 

)sin()1sin()()1( tttyty 
with 0)0( y .The exact solution of this problem is )sin(ty  . Using the procedure in 
Section 3  and taking N=7,8 and 9 the matrices in Eq.(22) are computed. Hence linear 
algebraic system is gained. This system is approximately solved using the Maple9.
We display  a plot of absolute difference exact and approximate solutions in Fig.3 and 
error functions for various N  is shown in Fig.4. The solution of the linear delay 
difference equation is obtained for N=7,8,9. The difference between the respective 

t Exact
Solution

   
    N=7  Ne=7

Present Method
     N=8       Ne=8 N=9 Ne=9

0.0 2.000000 1.999999 0.10000E-5 1.999999 0.10000E-5 2.000001 0.10000E-5
0.1 1.971773 1.971824 0.51000E-4 1.971629 0.14400E-3 1.971690 0.14400E-3
0.2 1.948698 1.948787 0.89000E-4 1.948519 0.17900E-3 1.948577 0.17900E-3
0.3 1.931144 1.931253 0.10900E-3 1.930986 0.15800E-3 1.931018 0.15800E-3
0.4 1.919508 1.919619 0.11100E-3 1.919390 0.11800E-3 1.919396 0.11800E-3
0.5 1.914214 1.914313 0.99000E-4 1.914137 0.77000E-4 1.914125 0.76000E-4
0.6 1.915717 1.915795 0.78000E-4 1.915673 0.44000E-4 1.915654 0.43000E-4
0.7 1.924505 1.924558 0.53000E-4 1.924484 0.21000E-4 1.924465 0.20000E-4
0.8 1.941101 1.941129 0.28000E-4 1.941093 0.80000E-5 1.941079 0.60000E-5
0.9 1.966066 1.966071 0.50000E-5 1.966065 0.10000E-5 1.966055 0.10000E-5
1.0 2.000000 1.999988 0.12000E-4 2.000004 0.40000E-5 1.999996 0.60000E-5
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solutions is of the order of 10-5 and the accuracy increases as the N is increased. For 
numerical results, see Table 3.

            Table2
            Error analysis of Example 2 for the t value 

   

                                       

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1
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0.8
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N=9

Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-5

N
e
=7

N
e
=8

N
e
=9

            Fig.3.Numerical and exact solution                   Fig.4.Error function of Example2 for various N.                                                                                              
                     of the Example2 for N=7,8,9

Example3.
Consider another linear delay difference equation 

0)()1()1()2(2)2()3(  tyttyttyt

We follow the same procedure as in Section 3 to find the solution of delay difference 
equation with the conditions 2/1)1(,0)0(  yy . The exact solution of the problem is 

given by 
1


t

t
y . For numerical results, see Table 3. We display a plot of absolute 

difference exact and approximate solution in Fig.5 and error functions for various N is 
shown in Fig.6. This plot clearly indicates that when we increase truncation  limit N, we 
have less error.
           

t Exact
Solution

   
    N=7  Ne=7

Present Method
     N=8       Ne=8 N=9 Ne=9

0.0 0.000000 0.200E-6 0.20000E-6 0.530E-6 0.53000E-6 0.122E-6 0.12200E-6
0.1 0.099833 0.099834 0.15100E-5 0.099832 0.12300E-5 0.099833 0.35000E-6
0.2 0.198669 0.198675 0.57000E-5 0.198669 0.10000E-6 0.198672 0.30000E-5
0.3 0.295520 0.295530 0.10400E-4 0.295523 0.37000E-5 0.295528 0.80000E-5
0.4 0.389418 0.389432 0.13700E-4 0.389426 0.83000E-5 0.389431 0.12800E-4
0.5 0.479425 0.479439 0.14400E-4 0.479436 0.11400E-4 0.479440 0.15200E-4
0.6 0.564642 0.564655 0.12500E-4 0.564654 0.12100E-4 0.564657 0.14900E-4
0.7 0.644217 0.644226 0.86000E-5 0.644227 0.10200E-4 0.644229 0.12100E-4
0.8 0.717356 0.717360 0.47000E-5 0.717362 0.64000E-5 0.717363 0.75000E-5
0.9 0.783326 0.783328 0.15000E-5 0.783329 0.21000E-5 0.783330 0.34000E-5
1.0 0.841471 0.841471 0.20000E-6 0.841469 0.17000E-5 0.841471 0.00000000
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           Table3
            Error analysis of Example 3 for the t value 
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              Fig.5.Numerical and exact solution                   Fig.6.Error function of Example3 for various N.
                       of the Example3 for N=7,8,9

Example4.
We consider linear delay difference equation to demonstrate that the Laguerre 
polynomials are powerful to approximate the solution to desired accuracy. The equation 
we consider is

tt teetttytyt 3)2()(3)1()2( )1(  

with the conditions 1)0( y . We again use Laguerre polynomials to approximate the 

solution of problem and compare it with the exact solution given by tety )( and 
following the procedure given in Section 3. The comparision of the solutions given 
above with the exact solution of the problem is given in Table4. We plot the 
approximate solutions by this method and the exact solution in Fig.7 and the error 
functions in Fig.8.

t Exact
Solution

   
    N=7  Ne=7

Present Method
     N=8       Ne=8 N=9 Ne=9

0.0 0.000000 0.500E-6 0.50000E-6 0.320E-5 0.32000E-5 0.100E-6 0.10000E-6
0.1 0.090909 0.912E-1 0.32807E-3 0.915E-1 0.61928E-3 0.914E-1 0.55292E-3
0.2 0.166666 0.167959 0.12928E-2 0.166427 0.23891E-3 0.167577 0.91094E-3
0.3 0.230769 0.232833 0.20638E-2 0.229189 0.15797E-2 0.231696 0.92713E-3
0.4 0.285714 0.288091 0.23775E-2 0.282990 0.27238E-2 0.286408 0.69451E-3
0.5 0.333333 0.335585 0.22523E-2 0.330013 0.33201E-2 0.333696 0.36362E-3
0.6 0.375000 0.376825 0.18252E-2 0.371714 0.32855E-2 0.375061 0.61970E-4
0.7 0.411764 0.413026 0.12621E-2 0.409043 0.27215E-2 0.411631 0.13306E-3
0.8 0.444444 0.445153 0.70886E-3 0.442613 0.18312E-2 0.444249 0.19514E-3
0.9 0.473684 0.473953 0.26909E-3 0.472835 0.84832E-3 0.473546 0.13786E-3
1.0 0.500000 0.499998 0.15700E-5 0.500017 0.17300E-4 0.500000 0.69000E-6
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           Table4
            Error analysis of Example 4 for the t value 
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               Fig.7.Numerical and exact solution                Fig.8.Error function of Example4 for various N.
                    of the Example4 for N=7,8,9

Example5.
Let us find the Laguerre series solution of fourth order linear delay difference equation                                                       
                                        2)()2()4(  ttytyty
with conditions
                               1)1(,3/2)3/2(,3/1)3/1(,0)0(  yyyy
and the exact solution tty )( . Using the procedure in Section 4, we find the 
approximate solution of this equation which is the same with the exact solution. 

5. CONCLUSION
In recent years, the studies of high order linear delay difference equation have attracted 
the attention of many mathematicians and physicists. The Laguerre collocation methods 
are used to solve the high order linear delay difference equation numerically. A 
considerable advantage of the method is that the Laguerre polynomial coefficients of the 
solution are found very easily by using computer programs. Shorter computation time 
and lower operation count results in reduction of cumulative truncation errors and 
improvement of overall accuracy. For this reason, this process is much faster than the 
other methods. Illustrative examples are included to demonstrate the validity and 

t Exact
Solution

   
    N=7  Ne=7

Present Method
     N=8        Ne=8 N=9 Ne=9

0.0 1.000000 1.000002 0.20000E-5 0.999999 0.11000E-5 1.000005 0.50000E-5
0.1 1.105171 1.104466 0.70500E-3 1.105296 0.12500E-3 1.105514 0.34300E-3
0.2 1.221403 1.220270 0.11330E-2 1.221315 0.88000E-3 1.221284 0.11900E-3
0.3 1.349859 1.348573 0.12860E-2 1.349479 0.38000E-3 1.349102 0.75700E-3
0.4 1.491825 1.490613 0.12120E-2 1.491226 0.59900E-3 1.490590 0.12350E-2
0.5 1.648721 1.647740 0.98100E-3 1.648035 0.68600E-3 1.647304 0.14170E-2
0.6 1.822119 1.821443 0.67600E-3 1.821483 0.63600E-3 1.820809 0.13100E-2
0.7 2.013753 2.013379 0.37400E-3 2.013263 0.49000E-3 2.012755 0.99800E-3
0.8 2.225541 2.225404 0.13700E-3 2.225241 0.30000E-3 2.224941 0.60000E-3
0.9 2.459603 2.459595 0.80000E-5 2.459581 0.12200E-3 2.459366 0.23700E-3
1.0 2.718282 2.718283 0.10000E-5 2.718280 0.20000E-5 2.718282 0.00000000
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applicability of the technique, and performed on the computer using a program written 
in Maple9. To get the best approximating solution of the equation, we take more forms 
from the Laguerre expansion of functions, that is , the truncation limit  N must be 
chosen large enough. In addition, an interesting feature of this method is to find the 
analytical solutions if the equation has an exact solution that is a  polynomial functions. 
Illustrative examples with the satisfactory results are used to demonstrate the 
application of this method. Suggested approximations  make this method very attractive 
and contributed to the good agreement between approximate and exact values in the 
numerical example.
As a result, the power of the employed method is confirmed. We assured the correctness 
of the obtained solutions by putting them back into the original equation with the aid of 
Maple, it provides an extra measure of confidence in the results. We predict that the 
Laguerre expansion method will be a promising method for investigating exact analytic 
solutions to linear delay difference equations.The method can also be extended to the 
system of linear  delay difference equations with variable coefficients, but some 
modifications are required.
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