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Abstract- In this paper, we applied Exp-function method to some nonlinear evolution 
equations. The solution procedure of this method, by the help of symbolic computation 
of Matlab, Mathematica or so on, is of utter simplicity. The obtained results show that 
Exp-function method is very powerful and convenient mathematical tool for nonlinear 
evolution equations in science and engineering. 
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1.INTRODUCTION

The investigation of the wave solutions for nonlinear evolution equations plays 
an important role in the study of nonlinear physical phenomena. In recent years, many 
effective methods have been proposed for solving the nonlinear differential equations, 
such that tanh-sech method [1], extended tanh method [2], sine-cosine method [3],
homogenous balance method [4], Jacobi elliptic function method [5], F-expansion 
method [6], homotopy perturbation method [7], variational iteration method [8], Hirotas 
bilinear methods [9], bifurcation method [10] and so on. In 2006, a new method, called 
Exp-function method, was first introduced by He and Wu [11], and was successfully 
studied in a lot of problems [12-20] and so on.

In this study, we apply Exp-function method to the two-dimensional Bratu-type 
equation given in [21] as

 exp 0xx yyu u su   ,                                                            (1)

and the generalized Fisher equation with higher order nonlinearity given in [22,23] as

 1 n
t xxu u u u   .                                                                        (2)

Two-dimensional Bratu model stimulates a thermal reaction process in a rigid material, 
where the process depends on a balance between chemically generated heat addition and 
heat transfer by conduction [24]. The nonlinear reaction-diffussion equation was first 
introduced by Fisher as a model for the propagation of a mutant gene. It has wide 
application in the fields of logistic population growth, flame propagation, 
neurophysiology, autocatalytic chemical reactions, and nuclear reactor theory. It is well 
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known that wave phenomena of plasma media and fluid dynamics are modelled by 
kink-shaped and tanh-solution or bell-shaped sech-solutions [25].

2. EXP-FUNCTION METHOD AND APPLICATION TO THE TWO-
DIMENSIONAL BRATU TYPE EQUATION

Using a complex variation   defined as kx wy    and the transformation 

 1 lnu s v , we can convert Eq. (1) into ordinary different equation, which reads

    22 2 2 2 3 0k w vv k w v sv      ,                                     (3)

where the prime denotes the derivative with respect to  .
We assume that the solution of Eq. (3) can be expressed in the form
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where c , d , p  and q  are positive integers, na  and mb  are unknown constants.

For simplicity, we set 1p c   and 1q d  , then Eq. (4) reduced to
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Substituting Eq. (5) into Eq. (3), we have

   4 0 4

1
exp 4 exp 4 0C C C

A
         .                         (6)        

Equating the coefficients of  exp n  in Eq. (6) to be zero yields a set of algebraic 

equations

4 3 2 1 00,        0,        0,        0,        0,C C C C C                        

1 2 3 40,        0,        0,        0.C C C C                         

Solving the system of algebraic equation given above, with the aid of symbolic 
computation system of Mathematica, we obtain

2
0

1 0 0 1 10,        ,        0,        ,
4

b
a a a a b    

                     



Exp-Function Method for Solving Nonlinear Evolution Equations260

 2
0 0 0 0 0,        / .b b w na k b b                                             (7)               

Substituting Eq. (7) into Eq. (5), we obtain the following exact solution
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So,
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Using the properties

      exp exp 2coshkx wy kx wy kx wy      ,            (10)                                               

when 0 2b   , it is easy to see that Eq. (9) can reduce to travelling wave solution as 

follows:
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3. THE GENERALIZED FISHER EQUATION

We now consider the generalized Fisher equation (2). Introducing the complex 
variation   defined as kx wt   , we have

2 1 0nk u wu u u     ,                                                           (12)                                               

where k , w  are real parameters and the prime denotes the derivative with respect to  .

Making the transformation

1

nu v ,                                                                                   (13)

Eq. (12) becomes

   22 2 2 3 2 21 0k nvv k n v wnvv n v n v        .                        (14)                                                        

We assume that the solution of Eq. (14) can be expressed in the form
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Substituting Eq. (15) into Eq. (14), and by the help of Mathematica, equating to 
zero the coefficients of all powers of  exp n ,  4, 3, ,3,4n      yields a set of 

algebraic equations for 1a , 0a , 1a , 1b , 0b , k , w . Solving this system of algebraic 

equations by using Mathematica, we obtain the following results:

Case 1:

2
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4
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where 0b  is a free parameter. Substituting these results into Eq. (15), we obtain the 

following exact solutions
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Using the properties

      exp exp 2coshkx wt kx wt kx wt      ,                   (18)       

      exp exp 2sinhkx wt kx wt kx wt      ,                  (19)

when 0 2b   , k  and w , Eq. (17) becomes
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Figure 1 – Solution u is shown at 
0 2b   and 1n .
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Figure 2 – Solution u is shown at 
0 2b    and 1n .
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Figure 3 – Solution u is shown at 
0 2b   and 2n .
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Case 2:

2
0
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where 0b  is a free parameter. Substituting these results into Eq. (15), we obtain the 

following exact solutions

 
1

1

0 1

,
kx wt n

kx wt kx wt

a e
u x t

e b a e

 


  


 
    

,                                          (22)

or
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Using the properties (18)-(19), when 0 2b   , k , w , Eq. (23) becomes
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where  / 2 2A n n   and    4 / 2 2B n n   .
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Figure 4 – Solution u is shown at 
0 2b   and 1n .
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Figure 5 – Solution u is shown at 
0 2b   and 1n .
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Figure 6 – Solution u is shown at 
0 2b    and 1n .
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Figure 7 – Solution u is shown at 
0 2b    and 1n .
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Figure 8 – Solution u is shown at 
0 2b    and 2n .

4. CONCLUDING REMARKS

In this study, we applied Exp-function method for obtaining the exact solutions 
of the two-dimensional Bratu-type equation and the generalized Fisher equation. The 
results show that this method is a powerful and effective mathematical tool for solving 
nonlinear evolution equations in science and engineering.
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