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Abstract- In this study, the dynamic behaviour of a beam carrying accelerating mass is 
investigated. A MATLAB code was developed for numerical solutions.  The 
accelerating moving mass that is travelling on the beam was modelled as a moving 
finite element in order to include inertial effects beside gravitation force of mass.  Since 
the mass moves along the deflected curve of the beam, these effects are, respectively, 
the centripetal force, the inertia force, and the Coriolis force components of the moving 
mass.  The effect of longitudinal force due to acceleration of the moving mass is also 
included.  Dynamic response of the beam was obtained depending on the mass ratio 
(mass of the load / the mass of the beam) and the acceleration of the mass.  Numerical 
results show the effectiveness of the method.
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1. INTRODUCTION

Dynamic response of structures under moving loads is an important problem in 
engineering and studied by many researchers.  Therefore, many studies are present in 
the literature.  The most of them, for example References [1, 7, 10, 12, 13, 15, and 16] 
assuming the moving load as a moving force has given some analytical solutions. Some 
of them, for example References [2, 3, 8, 18] has studied the subject for constant mass 
motion using finite element technique.  The importance of the subject increases with 
developments in robotics, high-speed transportation, aviation, high-speed precision 
machining and with the need of fast lifting and carrying systems in shipyards and 
factories.  Fryba [1] is an excellent book on analytical solution of moving loads over 
structures.  Cifuentes [2] has studied the subject using auxiliary functions with finite 
element approximation.  Wu [3] studied vibrations of a frame structure due to a moving 
trolley and the hoisted object.  Clough and Penzien [4] have studied dynamics of 
structures, as an excellent monograph their study referred by many researchers.  Wilson 
[5] is a reference on static and dynamic analysis of structural systems with numerical 
integration methods.  Wodek [6] has studied advanced structural dynamics and active 
control of structures.  Oguamanam et al [7] have investigated analytical solution of 
dynamic response of an overhead crane system.  Wu et al. [8] have studied on a method 
using standard finite element codes to determine the dynamic behaviour of systems 
carrying moving loads.  Yang et al. [9] have studied on one-dimensional flexible system 
carrying a moving oscillator. They have formulated the problem using a “relative 
displacement” model and showed that, in the limiting case when the stiffness of the 
spring is infinity, the moving-mass problem is obtained.  Foda et al. [10] have 
introduced a dynamic Green function formulation of a simply supported Bernoulli-Euler 
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thin beam subjected to a moving mass.  Zhu et al. [11] have used the Hamilton’s 
Principle to obtain the dynamic behaviour of a beam under moving loads.  They have 
shown that Newmark time integration method has given high precision results.  Abu 
Hilal et al. [12] have studied on vibration analysis of beams with general boundary 
conditions traversed by a moving force.  They obtained closed-form solutions for the 
response of beams subjected to a single deterministic moving force.  Gbadeyan et al. 
[13] have investigated an analytical solution with different options on dynamic 
behaviour of beams and rectangular plates under moving loads.  Lee [14] made research 
on separation between the flexible structure and the moving mass sliding on it.  Renard 
et al. [15] have investigated non-dimensional deflection and stresses of a Timoshenko 
beam under continuously moving force.  They gave some asymptotic results of transient 
deflection and stresses depending on velocity and arrival time of the force.  Savin [16] 
has obtained a dynamic amplification factor and an analytical solution of lightly 
damped beams at various boundary conditions due to a moving point force.  Wayou et 
al. [17] have studied non-linear dynamics of an Euler-Bernoulli beam under moving 
loads.  Wu [18] tried to find equivalent beam model of a plate that short sides supported 
and long sides are free.  Yavari et al. [19] developed Discreet Element Technique (DET) 
model for dynamic behaviour of Timoshenko beams.  They have investigated the effect 
of the speed of moving mass and thickness of the beam on the beam deflection.  Esen 
[20] has studied on the dynamic analysis of different overhead crane beams under 
moving loads using both analytical and numerical methods.

Figure 1 shows a simply supported Euler-Bernoulli beam with an accelerating 
mass mp.  The mass moves from left end to the right end with a variable speed vm(t) and 
a constant acceleration am over the beam. 
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Figure 1 – A simply supported beam with an accelerating mass on it.

The equation of motion of a simply supported Euler-Bernoulli thin beam 
subjected to an accelerating moving mass with the time dependent point of contact xp is 
analytically given in (1) [1].
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where E Young modulus;  I inertia moment of the cross section,  μ unit mass of the 
beam, x beam centre coordinate, t time, w(x,t) vertical deflection of the beam, ωb

circular frequency of damping, mp equivalent mass of the moving load p(x,t) and 
d2w(xp,t)/dt2 acceleration in z-direction.
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Boundary and initial conditions of a simply supported beam are; 
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One may obtain an approximate solution for the equation of motion, given in (1), 
with some simplifications such as omitting inertial and damping effects.  In such a case, 
the system of moving mass reduces to moving load problem, which has been studied by 
many researchers in the literature.  For an exact or an admissible solution in the 
engineering sense, there are needs of some new methods that represent mass motion 
with all effects.  When there is acceleration in the mass motion over structures, the 
solution of moving mass problem becomes complicated and studies on this field are 
limited. This paper presents a solution method called as "moving finite element” 
considering the accelerating-mass as a moving finite element. The classical finite 
element method was combined with a moving finite element to represent the motion of 
the accelerating mass with all effects. This method includes both inertial and damping 
effects and gives a solution for both transverse and longitudinal vibrations of the beam. 
If dynamic behaviour of a structural system is well-known or estimated, a vibration 
control algorithm can be designed to prevent structural damage. Determining realistic 
response of structural systems is very important to determine the service life of the 
structures. Numerical examples and results are presented.

2. FORMULATION

2.1. Mass, Damping and Stiffness Matrices of the Moving Finite Element
Figure 2 shows mesh discretion of a beam under an accelerating-mass and the sth 

beam element on which the moving mass mp applies, at time t.  The sth beam element 
has three equivalent nodal forces and displacements at each nodal point.  The time-
dependent global position of the moving mass in the span is xp(t), while local position 
on the length of the element s is xm(t).  The beam has n elements and (n+1) nodes.
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Figure 2 – Finite element discretion of a beam with an accelerating mass and equivalent 
nodal forces and displacements of the sth beam element.

When the beam is in vibration, the transverse (z) force component, between the 
moving mass and the beam, induced by the vibration and curvature of the deflected 
beam is [2].
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with 
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where  fz(x,t) is the applied  force by the accelerating mass at point x, and time t. δ(x-xp)
and g are respectively the Dirac-delta function and the gravitational acceleration.  
Besides, x0 and v0 are, respectively, the initial position and initial speed of the mass at 
the time is zero; and am is the constant acceleration of the moving-mass.

In case the inertia effect of the moving mass is considered, the acceleration 
d2wz(xp, t)/dt2 is computed from the total differential of the second order of the function  
wz(x,t) with respect to time t, with variable contact point xp [1] : 
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(6)

For uniformly accelerated or decelerated motions according to (5) acceleration in 
(6) is in the form
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  Equation (7) can be written as in a different shape:
2
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where “ ′ ” and “ · ” are, respectively, spatial and time derivatives of deflection. Besides, 
wz=wz(x,t) is vertical (z) deflection of the beam at point with coordinate x and time t. 

In such a case the Equation (4) becomes, 
2
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where p zm w , 2
0( )p m zm v a t w + m za w and 02 ( )p m zm v a t w   are, respectively, the inertia 

force, the centripetal force, the Coriolis force components of inertial effects of the 
moving-mass because it moves along the deflected shape of the beam.  Besides, the 
graviton-force of the moving mass is mg. 

When the beam is in vibration, the longitudinal (x) force component, between the 
accelerating mass and the beam, induced by the vibration and curvature of the deflected 
beam is, [3].
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The Equation (10) is shortly:

( , ) ( ),x p x pf x t m w x x  (11)

The equivalent nodal forces of the sth beam element under a lumped accelerating 
moving mass are: 

   ( 1,  4),s i i p xf N m w i  (12)



Dynamic Response of a Beam Due to an Accelerating Moving Mass 175
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where Ni (i=1- 6) are shape functions of the beam element given by [4]:
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where l the length of sth beam element and xm(t) is the variable distance between the 
moving mass and the left end of the sth beam element, at time t, as shown in Fig. 2.

The relation between shape functions and transverse displacements of the sth 
beam element at position x and time t, is [4]:

1 1 4 4( , )  ,x s sw x t N u N u  2 2 3 3 5 5 6 6( , )    ,z s s s sw x t N u N u N u N u    (16, 17)

where ui (i = 1–6) are the displacements for the nodes of the beam element on which the 
moving mass mp locates.

Substituting (14) and (15) into (10) and (11), and writing the resulting expressions 
in matrix form yields: 
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For all unknown elements of [k]
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with

0( ) ,mv t v a t  (19i)

where [m], [c] and [k] are, respectively, the mass, damping and stiffness matrices of the 
moving finite element.  The position xp(t) of the accelerating mass mp is changing 
depending on acceleration in terms of  (5) , the values of the mass, damping and 
stiffness matrices, [m], [c] and [k], of the moving finite element are time-dependent.  
Besides, the damping and stiffness matrices have a variable speed component, v (t), as 
given in (19f) and (19g).

The dimensions of the mass, damping and stiffness matrices of the moving finite 
element are equal to the dimensions of the mass, damping, stiffness matrices of two-
node beam element.  Hence, a beam element has three displacements DOF at each end 
nodal point; the dimensions of the property matrices of the moving finite element will 
be 6x6. 

2.2. Equation of Motion of the entire System. 
The equation of motion for the multiple degree of freedom damped structural 

system shown in Fig. 2, is given by

[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )},M z t C z t K z t F t  
  

   (20)

where [ M


], [ C


] and [ K


] are, respectively, the overall mass, damping and stiffness 
matrices, while { ( )}z t , { ( )}z t and { ( )}z t  are respectively, the acceleration, velocity and 
displacement vectors.  Besides, { ( )F t


} is the overall external force vector of the system 

at time t.

2.3.   Mass and stiffness matrices of the structural system under moving mass.
In general, such a structural system shown in Fig. 2, one can obtain overall 

stiffness K and mass M matrices by assembling its element matrices and imposing given 
boundary conditions.  If the mass is accelerating over the structure, the stiffness and 
mass matrices of entire system can be obtained by taking into account the contribution 
of inertial and centripetal forces induced by accelerating mass. 

In this case the instantaneous overall stiffness and mass matrices, which are n x n in 
size, are:

 ( , 1 ),ij ijK K i j n  


    
   ( , 1 ),ij ijM M i j n  


(21, 22)

except for the element matrices of the sth element.

 sj  sj     ( , 1 6),si si ijK K k i j   


     sj  sj     ( , 1 6)si si ijM M m i j   


(23, 24)

The instantaneous values of xm(t) and s can be determined as follows:

( ) ( ) ( 1) ,m px t x t s l  
  

( )
(integer part of ) 1,   (1 ),px t

s s n
l

    (25, 26)
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2.4. Damping matrix of a structural system under accelerating mass.
The damping matrix C can be determined by using Rayleigh damping theory in 

which the damping matrix is proportional to the combination of the mass and stiffness 
matrices.  In such a case, the damping matrix can be determined as follows:

,C aM bK  (27)

 Values of a, b in (27) can be obtained by the solution of the following equation [4].

2 2

         -   
2
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                   
(28)

where ζi and ζj are the damping ratios of the structural system for any corresponding 
natural frequencies ωi  and ωj.  Then the instantaneous overall damping matrix of the 
damped system under the action of accelerating mass is:

 ( , 1 ),ij ijC C i j n  


(29)

except that

 sj  sj     ( , 1 4)si si ijC C c i j   


, (30)

2.5. Overall force vector of the structural system under moving mass.
The instantaneous overall force vector is also time-depended.  The coefficients of 

overall force vector are equal to zero except the nodal forces of the sth beam element.  
Thus, the instantaneous overall force vector of entire system becomes as below:

1 2 3 4 5 6{ ( )} [0 ...                ... 0]T
s s s s s sF t f f f f f f


(31)

with
    ( 2,  3,  5,  6)s i if mgN i  ,      ( 1,4)s i m if ma N i  (32, 33)

where Ni (i=1- 6) are the shape functions given in  (14).

3. SOLUTION OF EQUATION OF MOTION

For such a system, given in (20), one can obtain a solution by using a numerical 
integration method like Newmark’s method [5].  Undamped natural frequencies and 
vibration mode-shapes of the beam are obtained from homogenous solution of (20).  In 
such a case, the Equation (20) reduces to:

  0M z K z  (34)
The solution of (34) is z=φe jωt [6].  Hence, the second derivative of the solution is 

z=-ω2 φe jωt.  Introducing the latter z and z  into (34) gives 
2( ) 0,j tK M e    (35)

This is a set of homogeneous equations, for which a nontrivial solution exists if 
the determinant of K- ω2M is zero,

2det( ) 0,      ( 1 ),iK M i n    (36)

The above determinant equation is satisfied for a set of n values of frequency ω1, 
ω2, …, ωn.  The frequency ωi is called the ith natural frequency.  Substituting ωi into 
(35) yields the corresponding set of vectors {φ1, φ2, …, φn} that satisfy this equation.  
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The ith vector φ i corresponding to the ith natural frequency is called the ith natural 
mode, or ith mode shape [6].

If the mass travels on the beam, the instantaneous mass and stiffness matrices 
should be used for the solution of instantaneous natural frequencies of the entire system. 

In this case, the (34) is in the form: 

  0M z K z 
 
 (37)

For the frequency solution of (37), one can use (38).  That is:
2det( ) 0,      ( 1 ),iK M i n   

 
(38)

where ωi is the ith forced vibration frequency of the entire system.  If the mass and 
stiffness matrices, used in (38) are time-dependent; the frequency solution will also be 
time dependent. For the calculation of the instantaneous overall mass and stiffness 
matrices of the entire system at every time step of ∆t, one may use following steps:  

1. Determine the mass and stiffness matrices of each beam element.
2. For time t, determine the element s on which the moving mass locates with (26). 
3. Determine xm(t) which is the time dependent position of the moving mass on the 

sth element with  (25). 
4. Calculate the time dependent shape functions with (14) by substituting the value 

xm(t) which is defined in the previous step.
5. Calculate the mass, stiffness and damping matrices of the moving finite element 

with (19e), (19f), and (19g). 
6. Calculate the mass and stiffness matrices of the sth element with the help of (23) 

and (24) by adding the defined mass and stiffness matrices of the moving finite 
element. 

7. Calculate the instantaneous overall mass and stiffness matrices of the entire 
system by combining the mass and stiffness matrices of each beam element.  Then 
impose boundary conditions. Eigen solution of these matrices gives instantaneous 
natural frequency of the entire system at time t. 

8. For t+∆t go to step 2

4. NUMERICAL RESULTS

For all the results given in this paper, the gravitational acceleration g is 9.81m/s2

and the damping ratios are ζ1= ζ2=0.005 with the corresponding natural frequencies ω1

and ω2. For an illustration, a simply supported beam with the material properties listed 
in Table 1 is studied.  The beam is square in cross section and made of steel.  The 
material properties of the beam are the same as Reference [7].  The mass travels with 
constant acceleration from the left end to right end of the beam in all simulations. 

Table 1 – Material properties.
ρ 8000 kg/m3 I 2,133 x 10-7 m4

E 2,117 x 1011 N/m2 g 9,81 m/s2

L 10 m ρ AL 128 kg
A 16 x 10-4 m2 μ 12,8 kg/m

In the developed Matlab program, fifty identical finite elements were used for the 
solution of the discreet system given in (18). The natural vibration frequencies of the 
beam were calculated from homogenous solution of (18) i.e. (32); and given in Table 2.
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Table 2 – Natural frequencies of the beam without mass (Hz).
First Second Third

0,9330 3,7319 8,3959

Vibration frequencies and corresponding vibration modes are dramatically 
affected by mass acceleration.  The first, second and third undamped vibration 
frequencies are depicted in Fig. 3 for mass ratios m/M = 0.2, 0.4, 0.8, 1and 1.5 to show 
frequency-change of the beam under accelerating mass.

Figure 3 – The 1st, 2nd and 3rd vibration frequencies under the accelerating mass for 
various m/M and; am=2 m/s2 with zero initial speed.

The vibration frequency of the beam decreases as expected when the mass is 
increased.  In addition, the maximums and minimums in the curves moves to the right 
or to the left depending on the position of the accelerating mass in the span, the 
frequency curves   from an axis at midpoint are not symmetric. 

Time-dependent vertical deflections of beam under accelerating mass are given in 
Fig. 4 for a mass ratio of 0.2 and various acceleration values of the mass.  Vertical and 
horizontal axes represent, respectively, vertical deflections and dimensionless position 
of accelerating mass.  All graphics are obtained assuming that the mass  starts to move 
with zero initial speed from left end to the right end at time is equal to travelling time 
T=(2L/am).  As seen from Fig.4, no wavy shape occurs in the deflection curves if the 
acceleration values are greater than 0.25. The more the acceleration increases the more 
the deflection curve shape tends to the right end. Thus, the maximum point depending 
on the increasing acceleration travels to the right end.

Figure 4 – Vertical beam deflections for various accelerations with m/M= 0.2 and zero 
initial speed; where a=am (m/s2). 
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For same mass ratio, the more the acceleration increases the more the deflection 
increases. The maximum deflection does not occur at the middle point of the beam for 
all acceleration values.  At lower acceleration, i.e. am=0.25 m/s2, the beam can perform 
vibration because a lower acceleration value is not dominant for the deflection of the 
beam.  When the acceleration is high enough, i.e. 0.5 m/s2, the acceleration of mass 
dominantly defines the deflection shape of the beam. 

Figure 5 shows the vertical deflections of the beam for a mass acceleration am=2 
m/s2 with zero initial mass speed and different mass ratios of 0.2, 0.5, 0.75, and 1.  As 
expected, if mass ratio increases it causes an increase in resulting deflection.  The 
deflection increases dramatically but vibration shape change slightly as seen from figure 
that the maximum points of the curves slightly move towards the right end with 
increasing mass ratio.  Thus, in vibration shape of the beam, the effect of mass-
acceleration is higher than mass-ratio.

Figure 5 –Vertical beam deflections under the accelerating mass for various m/M and; 
am=2 m/s2 with zero initial speed.

Figure 6 shows longitudinal beam deflections due to accelerating mass.  For same 
mass ratio, if acceleration increases, it causes higher longitudinal deflection.  For some 
acceleration value such as 4 m/s2 when the mass reaches approximately 60 percent of 
the total length of the beam, the longitudinal deflection curve shows a kind of 
resonance.

Figure 6 – Longitudinal beam deflections due to the accelerating mass for m/M=0.5
and; a=am=2 and 4 m/s2 with zero initial mass speed.
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Figure 7 shows vertical accelerations of the beam under different mass 
accelerations. The increase of mass acceleration over the beam causes excessive 
vibration acceleration. For a small time range about 60 percent of travelling time T, the 
beam structure shows unstable higher acceleration. 

Figure 7 – Vertical beam accelerations under the accelerating mass for m/M=0.5 and; 
a=am=2 and 4m/s2 with zero initial speed.

5. CONCLUSIONS

Acceleration of a travelling mass over a structural system, highly affects the 
dynamic response of the structural system. Presented method can give engineers some 
advantages to make a more realistic modelling of structural systems under accelerating 
mass motion than classical methods that omit inertial effects of accelerating mass. The 
accelerating mass is modelled as a moving finite element. Thus, in the finite element 
modelling of the entire system, the combination of mass, stiffness and damping matrices 
of a beam element with the mass, stiffness and damping matrices of the moving finite 
element can easily be made by taking into account the inertial effects of the accelerating 
mass. However, it is a time consuming work to determine instantaneous overall mass, 
stiffness and damping matrices and overall force vector for every time step. However, 
with the help of computer and some codes like MATLAB, this disadvantage can be 
overcome. If more accurate results are required one may pay for this cost.
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