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Abstract: In this paper, the three-wave method is used for seeking periodic kink-wave 
and cross-kink soliton solutions. The (3 + 1)-dimensional Boussinesq equation is chosen 
as an example to illustrate the effectiveness and convenience the proposed method.  
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1. INTRODUCTION 
 
In this paper, we will study the (3+1)-dimensional Boussinesq equation 
 

utt = uxx+uyy+uzz+uxxxx+3(u2)xx .                                (1) 
 

which admits many remarkable properties such as N-soliton solutions, N-breather 
solutions, periodic solutions, symmetries. In this paper the three–wave method[1] will be 
used to elucidate the inner interaction.  
 
 

2. THREE-WAVE METHOD 
 

The three-wave method was proposed by Dai et al. in [1] to find coupled wave 
solutions, the method caught an immediate attention and it was widely used to search 
for generalized solitary solutions and periodic solutions[2-5]. 

By using the transformation 
                u=2ln(f)xx,                                                ( 2) 

 
where f(x, y, z, t) is an unknown real function. 
Eq. (1) is transformed into the bilinear form 
 

,0)( 42222 =⋅−−−− ffDDDDD xzyxt                                 (3) 
 

According to the three-wave method[1], we suppose that the real function f(x,y,z,t) has 
the following ansatz:  

f(x,y,z,t)= e−η1 +L cos(η2)+H cosh(η3)+Keη1,                            (4) 
 

where ηi = aix+biy+ciz+dit(i=1,2,3)and ai,bi, ci,di are constants to be determined later. 
Substituting Eq. (4) into Eq. (3) and equating the coefficients of all powers of 
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)cos()cosh( 23 ηη , , , , , )cos( 2
)( 1 ηη−e )cos( 2

1 ηηe )cosh( 3
)( 1 ηη−e )cosh( 3

1 ηηe
)sinh()sin( 32 ηη , , , ,  and the constant 

term to zero, we can obtain a set of algebraic equations for H, K, L, a
)sinh( 3

)( 1 ηη−e )sinh( 3
1 ηηe )sin( 2

)( 1 ηη−e )sin( 2
1 ηηe

i, bi, ci and 
di(i=1,2,3) as follows: 
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Solving the set of algebraic equations with the help of symbolic computation system, 
such as Maple, Mathematica, MatLab and so on, we obtain the following results. 
Case 1. 

H=0,     a2=0,    b1=0,    c1=0,     d1=0,  
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Substituting these parameters into Eq. (4) and then (2), there exists following solution:  
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c2 are free parameters. 
The solution given by Eq. (5) are periodic soliton solutions which is a periodic 

traveling wave on the y–z direction, meanwhile a soliton on the t-direction, see  Fig. 1. 
 

Case 2. 
L=0,     a3=0,    b1=0,    c1=0,     d1=0,  
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Proceeding the same way as that for Case 1, we have the following solution  
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c3 are arbitrary real constants. 
Obviously, the solutions given by (6) are cross-kink wave solutions which are 

periodic on the x–direction, meanwhile  solitary on the x–t direction, see Fig. 2. In 
particular, by choosing different values of  H , a1, b3, c3 in (6), we can derive several 
classes of special solitary solutions of Eq. (1), here we omit them for simplicity. 

 
Fig. 1. The figure of u(x,y,z,t): L= 10 , a1=1, b2= c2=3, x=t=1 

 

 
Fig. 2. The figure of u(x,y,z,t): H= 52 ,  a1=b3=c3=1, y=z=1. 
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3. CONCLUSION 
 

In this paper, the three-wave approach is applied to the (3+1)-dimensional 
Boussinesq equation. New three-wave solutions including periodic cross-kink wave 
solutions and cross-kink soliton solutions are obtained. Moreover, mechanical feature of 
wave is exhibited. All the presented solutions show the remarkable richness of the 
solution space of the (3+1)-dimensional Boussinesq equation (1). It is also shown that 
the three-wave method is direct, concise and effective; it can be used to treat many other 
types of nonlinear evolution equation. 
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