APPLICATION OF HAMILTONIAN APPROACH TO AN OSCILLATION OF A MASS ATTACHED TO A STRETCHED ELASTIC WIRE

Lan Xu

National Engineering Laboratory of Modern Silk, Soochow University, No. 1, Shizi Street, Suzhou 215006, China, xlanmail@21cn.com

Abstract- This paper applies Hamiltonian approach to a nonlinear oscillation of a mass attached to a stretched wire. Comparison of the obtained results with those of the exact solution shows that the approximate solutions are accurate and valid for the whole solution domain.

Keywords- Variational principle; Periodic solution; Amplitude-frequency relationship

1. INTRODUCTION

With the rapid development of nonlinear science, there has appeared everincreasing interest of scientists and engineers in the analytical asymptotic techniques for nonlinear oscillations. In particular, a nonlinear oscillation of a mass attached to a stretched wire is of much interest. Various kinds of analytical solutions methods and numerical solutions methods were used to handle the problem [1-5]. Hamiltonian approach is proven to be a very effective and convenient way for handling nonlinear problems [6, 7]. A conservative oscillator admits a Hamiltonian invariant [8], which can be used to determine an approximate solution [6-8].

In this paper we aim to apply Hamiltonian approach to a nonlinear oscillation of a mass attached to a stretched wire and handle the governing non-dimensional equation of motion [1]

$$u'' + u - \frac{\lambda u}{\sqrt{1 + u^2}} = 0, 0 < \lambda \le 1, \tag{1}$$

with initial conditions

$$u(0) = A, \quad u'(0) = 0,$$
 (2)

which is an example of a conservative nonlinear oscillatory system having an irrational elastic item. All the motions corresponding to Eq. (1) are periodic [1], the system will oscillate between symmetric bounds [-A, A], and its angular frequency and corresponding periodic solution are dependent on the amplitude A.

2. HAMILTONIAN APPROACH

We apply this method to the discussed system. Its Hamiltonian can be easily obtained, which reads [6]

$$H = \frac{1}{2}u'^2 + \frac{1}{2}u^2 - \lambda\sqrt{1 + u^2},$$
 (3)

902 L. Xu

Integrating Eq.(3) with respect to t from 0 to T/4, we obtain

$$\overline{H}(u) = \int_0^{T/4} \left[\frac{1}{2} u'^2 + \frac{1}{2} u^2 - \lambda \sqrt{1 + u^2} \right] dt , \qquad (4)$$

Considering the initial conditions, we assume the solution of Eq.(1) can be expressed as $u = A\cos\omega t$. Substituting it into Eq.(4), we have

$$\overline{H}(u) = \int_{0}^{T/4} \left[\frac{1}{2} A^{2} \omega^{2} \sin^{2} \omega t + \frac{1}{2} A^{2} \cos^{2} \omega t - \lambda \sqrt{1 + A^{2} \cos^{2} \omega t} \right] dt$$

$$= \int_{0}^{\pi/2} \left\{ \frac{1}{2} A^{2} \omega \sin^{2} \theta + \frac{1}{\omega} \left[\frac{1}{2} A^{2} \cos^{2} \theta - \lambda \sqrt{1 + A^{2} \cos^{2} \theta} \right] \right\} d\theta,$$

$$= \frac{\pi}{8} A^{2} \omega + \frac{1}{\omega} \left[\frac{\pi}{8} A^{2} - \lambda \int_{0}^{\pi/2} \sqrt{1 + A^{2} \cos^{2} \theta} d\theta \right]$$
(5)

According to the Hamiltonian approach [6], we set

$$\frac{\partial}{\partial A} \left(\frac{\partial \overline{H}}{\partial (1/\omega)} \right) = -\frac{\pi}{4} A \omega^2 + \frac{\pi}{4} A - \lambda A \int_0^{\pi/2} \frac{\cos^2 \theta}{\sqrt{1 + A^2 \cos^2 \theta}} d\theta = 0, \tag{6}$$

Therefore, we obtain

$$\omega^{2} = 1 - \frac{4\lambda}{\pi} \int_{0}^{\pi/2} \frac{\cos^{2} \theta}{\sqrt{1 + A^{2} \cos^{2} \theta}} d\theta$$

$$= 1 - \frac{4\lambda}{\pi A^{2}} \int_{0}^{\pi/2} \sqrt{1 + A^{2} \cos^{2} \theta} d\theta + \frac{4\lambda}{\pi A^{2}} \int_{0}^{\pi/2} \frac{1}{\sqrt{1 + A^{2} \cos^{2} \theta}} d\theta.$$
 (7)
$$= 1 - \frac{4\lambda}{\pi A^{2}} [E(-A^{2}) - K(-A^{2})]$$

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, respectively, defined as follows[9]

$$K(m) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - m\cos^2\theta}} d\theta, E(m) = \int_0^{\pi/2} \sqrt{1 - m\cos^2\theta} d\theta.$$

From Eq.(7), we can easily get the following approximate frequency-amplitude relationship

$$\omega = \sqrt{1 - \frac{4\lambda}{\pi A^2} [E(-A^2) - K(-A^2)]}.$$
 (8)

Hence, the approximate period is

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{1 - \frac{4\lambda}{\pi A^2} [E(-A^2) - K(-A^2)]}}.$$
 (9)

which is same as that obtained by the parameter-expansion method [2]. Its exact period [1] is

$$T_e = 4 \int_0^{\pi/2} \left[1 - 2\lambda / (\sqrt{1 + A^2 \sin^2 \theta} + \sqrt{1 + A^2}) \right]^{-1/2} d\theta . \tag{10}$$

In order to verify the correctness of the obtained periods, we consider some special cases.

For $\lambda = 0.1, 0.5, 0.75$ and 0.95, comparison of the approximate periods T with exact periods T_e is tabulated in Table 1.

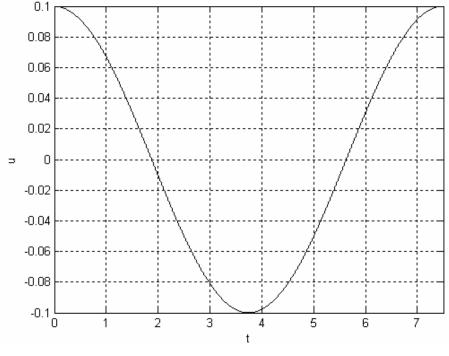
Table 1 Comparison of the approximate period with exact period for $\lambda = 0.1, 0.5, 0.75$ and 0.95

A	$\lambda = 0.1$		$\lambda = 0.5$		$\lambda = 0.75$		$\lambda = 0.95$	
	T	T_{e}	T	T_{e}	T	T_{e}	T	$T_{_{e}}$
0.4	6.603286	6.603056	8.655950	8.653029	11.668481	11.65250	20.80578	19.78073
0.7	6.576824	6.571430	8.386613	8.316817	10.89667	10.53734	14.65771	14.73436
4	6.385624	6.378382	6.849978	6.853328	7.193035	7.201351	7.503453	7.517983
7	6.341117	6.339461	6.58965	6.590660	6.760005	6.748172	6.905591	6.891635
50	6.291201	6.291201	6.32357	6.323589	6.344056	6.344097	6.360587	6.360653
500	6.283985	6.283986	6.287189	6.287190	6.289193	6.289194	6.290799	6.290801

According to Eq.(8), we can obtain the following approximate solution

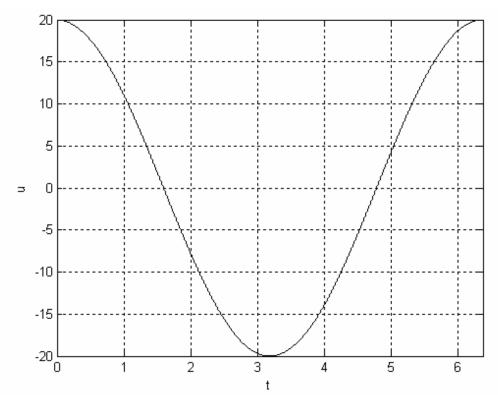
$$u = A\cos[(1 - \frac{4\lambda}{\pi A^2} [E(-A^2) - K(-A^2)])^{1/2}t]$$
 (11)

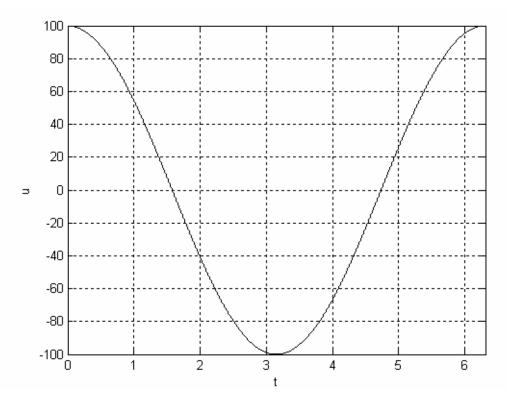
which agrees very well with the exact solution as illustrated in Fig.1.



 $\lambda = 0.3, A=0.1$

904 L. Xu





 $\lambda = 0.65$, A=100

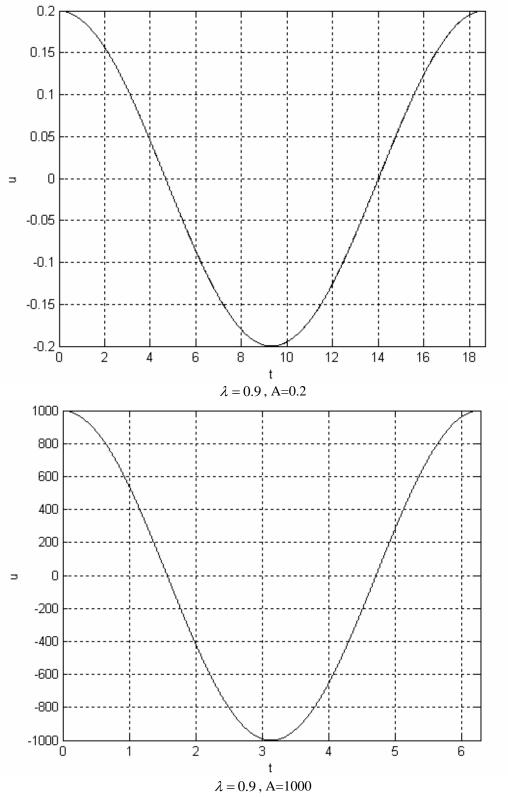


Fig.1 Comparison of the approximate solution with the exact solution. Dashed line: the approximate solution, solid line: the exact solution.

906 L. Xu

3. CONCLUSION

In this paper Hamiltonian approach is proved to be a powerful mathematical tool to solving nonlinear oscillators, which can be easily extended to any conservative oscillators. The obtained solutions are in good agreement with exact ones for a wide range of values of oscillation amplitude. The results show that the solution procedure of Hamiltonian approach is of deceptive simplicity and high accuracy.

4. REFERENCES

- 1. W. P. Suna, B. S. Wua, C. W. Lim, Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire, *Journal of Sound and Vibration* **300** (3-5), 1042-1047, 2007.
- 2. L. Xu, Application of He's parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire, *Physics Letters A* **368** (3-4), 259-262, 2007.
- 3. A. Beléndez, T. Beléndez, C. Neipp, A. Hernández, M.L. Álvarez, Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method, *Chaos, Solitons & Fractals* **39 (2)**, 746-764, 2009.
- 4. N. Jamshidi, D. D. Ganji, Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire, *Current Applied Physics* **10** (2), 484-486, 2010.
- 5. A. Beléndez, A. Hernández, T. Beléndez, M.L. Álvarez, S. Gallego, M. Ortuño, C. Neipp, Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire, *Journal of Sound and Vibration* **302** (4-5), 1018-1029, 2007.
- 6. J. H. He, Hamiltonian approach to nonlinear oscillators, *Physics Letters A* **374**, 2312-2314, 2010.
- 7. L. Xu, A Hamiltonian approach for a plasma physics problem, *Computers & Mathematics with Applications*, In Press, Corrected Proof, Available online 20 July 2010.
- 8. J. H. He, Preliminary report on the energy balance for nonlinear oscillations, *Mechanics Research Communications* **29**, 107-111, 2002.
- 9. L. M. Milne-Thomson, Elliptic integrals. In: M. Abramowitz, I.A. Stegun, editors, *Handbook of mathematical functions*, over Publications, Inc., New York, 1972.