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Abstract- This paper applies Hamiltonian approach to a nonlinear oscillation of a mass 
attached to a stretched wire. Comparison of the obtained results with those of the exact 
solution shows that the approximate solutions are accurate and valid for the whole 
solution domain.  
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1. INTRODUCTION 
 
 With the rapid development of nonlinear science, there has appeared ever-
increasing interest of scientists and engineers in the analytical asymptotic techniques for 
nonlinear oscillations. In particular, a nonlinear oscillation of a mass attached to a 
stretched wire is of much interest. Various kinds of analytical solutions methods and 
numerical solutions methods were used to handle the problem [1-5]. Hamiltonian 
approach is proven to be a very effective and convenient way for handling nonlinear 
problems [6, 7]. A conservative oscillator admits a Hamiltonian invariant [8], which can 
be used to determine an approximate solution [6-8].  
 In this paper we aim to apply Hamiltonian approach to a nonlinear oscillation of 
a mass attached to a stretched wire and handle the governing non-dimensional equation 
of motion [1] 
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with initial conditions 

(0) , (0) 0u A u′= = ,                                                  (2) 

which is an example of a conservative nonlinear oscillatory system having an irrational 
elastic item. All the motions corresponding to Eq. (1) are periodic [1], the system will 
oscillate between symmetric bounds [-A, A], and its angular frequency and 
corresponding periodic solution are dependent on the amplitude A. 
 

2. HAMILTONIAN APPROACH 
  
 We apply this method to the discussed system. Its Hamiltonian can be easily 
obtained, which reads [6] 
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Integrating Eq.(3) with respect to t from 0 to T/4, we obtain 
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H u u u uλ′= + − +∫ dt ,                                 (4) 

Considering the initial conditions, we assume the solution of Eq.(1) can be expressed as 
cosu A tω= . Substituting it into Eq.(4), we have  
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According to the Hamiltonian approach [6], we set 
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Therefore, we obtain  
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where K(m) and E(m) are the complete elliptic integrals of the first and second kind, 
respectively, defined as follows[9] 
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From Eq.(7), we can easily get the following approximate frequency-amplitude 
relationship 
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Hence, the approximate period is 
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which is same as that obtained by the parameter-expansion method [2].  
 Its exact period [1] is 
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In order to verify the correctness of the obtained periods, we consider some special 
cases. 
 For 0.1,0.5,0.75λ =  and 0.95, comparison of the approximate periods T with 
exact periods  is tabulated in Table 1. eT
Table 1 Comparison of the approximate period with exact period for 0.1,0.5,0.75λ =  
and 0.95 

0.1λ =  0.5λ =  0.75λ =  0.95λ =  
A 

T eT  T eT  T eT  T eT  

0.4 

0.7 

4 

7 

50 

500 

6.603286 

6.576824 

6.385624 

6.341117 

6.291201 

6.283985 

6.603056 

6.571430 

6.378382 

6.339461 

6.291201 

6.283986 

8.655950

8.386613

6.849978

6.58965 

6.32357 

6.287189

8.653029

8.316817

6.853328

6.590660

6.323589

6.287190

11.668481

10.89667 

7.193035 

6.760005 

6.344056 

6.289193 

11.65250 

10.53734 

7.201351 

6.748172 

6.344097 

6.289194

20.80578 

14.65771 

7.503453 

6.905591 

6.360587 

6.290799 

19.78073 

14.73436 

7.517983 

6.891635 

6.360653 

6.290801 
 

 According to Eq.(8), we can obtain the following approximate solution  
2 2 1

2

4cos[(1 [ ( ) ( )]) ]u A E A K A t/ 2
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π
= − − − −                            (11) 

which agrees very well with the exact solution as illustrated in Fig.1.  

 
0.3λ = , A=0.1 
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0.45λ = , A=20 

 
0.65λ = , A=100 
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0.9λ = , A=0.2 

 
0.9λ = , A=1000 

Fig.1 Comparison of the approximate solution with the exact solution. Dashed line: the 
approximate solution, solid line: the exact solution. 
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3. CONCLUSION 
  
 In this paper Hamiltonian approach is proved to be a powerful mathematical tool 
to solving nonlinear oscillators, which can be easily extended to any conservative 
oscillators.  The obtained solutions are in good agreement with exact ones for a wide 
range of values of oscillation amplitude. The results show that the solution procedure of 
Hamiltonian approach is of deceptive simplicity and high accuracy. 
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