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Abstract- We derive a system of coupled nonlinear differential equations that govern 
the motion of yarn in general. The equations are written in a (non-uniformly) rotating 
observation frame and are thus appropriate for description of over-end unwinding of 
yarn from stationary packages. We comment on physical significance of virtual forces 
that appear in a non-inertial frame and we devote particular attention to a lesser known 
force, that only appears in non-uniformly rotating frames. We show that this force 
should be taken into account when the unwinding point is near the edges of the package, 
and the quasi-stationary approximation is not valid because the angular velocity is 
changing with time. The additional force has an influence on the yarn dynamics in this 
transient regime where the movement of yarn becomes complex and can lead to yarn 
slipping and even breaking. 
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1. INTRODUCTION 
 

In the production of garments thread unwinding exist in a sewing process. In 
order to achieve low and constant tension of thread or yarn it is necessary to optimize 
the process of unwinding. Computer simulation are now in use for this purpose, so it is 
important to obtain a mathematical description of yarn motion [1,2]. 

 
 

2. KINEMATICS 
 

 
Fig.1 Cylindrical coordinate system rotates around the z axis with an angular velocity ω 
 

We introduce a cylindrical coordinate system that rotates around the z axis with an 
angular velocity ω. The yarn is parametrised with arc length s (s is therefore the length 
of yarn from the origin of the coordinate system to the given point on the yarn). The 



 
 

S. Praček and S. Franci 847

coordinates of a point are given by r, the radial distance from the axis, θ, the polar angle 
and z, the vertical distance from the origin [3,4]. 

It should be kept in mind that each point has its own triplet of base vectors ez, eθ, er, 
respectively pointing in vertical, tangential and radial direction. The radius vector 
pointing to a point on the yarn can be decomposed along radial and vertical directions 
(the polar angle dependence is hidden in the er vector): 

                                       r(s,t) = r(s, t)er (θ(s,t),t) + z(s, t)ez                                            (1) 

We have emphasized that coordinates of a point depend explicitelyon both the time of 
observation t and on the arc length s, where the point is located at given time t.The 
velocity of a point on a yarn that is being withdrawn (with withdrawing speed V) is 
given by the total time derivative: 

                                                       v =
dr
dt

=
∂r
∂t

+
∂r
∂s

∂s
∂t

                                                  (2) 

It is important to note that the velocity is not given by the local (partial) time derivative, 
denoted by ∂r/∂t. This derivative does not take into account that in the infinitesimal time 
Δt the point moves to a different position along the yarn (i.e. to a different arc length s). 
The contribution to velocity due to this movement is described by the additional term 
∂r/∂s ∂s/∂t. The withdrawing speed is equal to V=-∂s/∂t and we obtain the following 
expression: 

                                                            v = r
.
−V ∂r

∂s
                                                      (3) 

where the dot denotes the partial derivative with respect to time. It’s worth noting that 
t=∂r/∂s is the unit tangential vector to the yarn. Indeed the direction of the withdrawing 
velocity at a given point should be in the direction of the yarn. 
To calculate the time derivative of the radius vector we make use of a relation between 
derivatives in an inertial and a rotating frame: 

                                                        
∂
∂t

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

K

=
∂
∂t

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

K '

+ ωx .                                              (4) 

When applied to a base vector, that is rotating around the Z axis together with the yarn, 
this equations gives                                                                                                          

                                                    ∂ei(t)
∂t

= ω × ei(t)                                                    (5) 

The partial time derivative of the radius vector is then found to 

be:            (6) r
.
= r

.
er + rer

.
+ z

.
ez + zez

.
= r

.
er + rθeθ + z

.
ez + ω × (rer + zez )

.

= vrel + ω × r.

The final expression for the velocity of a point is of the form 

                                                         v= vrel + ω × r −V ∂r
∂s

                                             (7) 

The three contributions to the velocity of the point have very simple physical 
interpretations. The first term is the relative velocity in the non-intertial frame; it 
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describes how the form of the yarn is changing from the point of view of an observer 
that is rotating together with the yarn, but it is not equal to the velocity of a given point 
in the non-intertial frame. (This term is dropped in the quasi-stationary approximation 
that we describe below.) The second term is the circular velocity of the point due to the 
rotation of the frame; this is the velocity of a point that is fixed in the non-inertial frame. 
Finally, the last term is the withdrawing velocity that we introduced above. 
By analogy, the acceleration of a point is given by the total time derivative of the 
velocity. By a lengthy but straight-forward calculation we obtain the following 
expression: 

              a = arel + 2ω × vrel − 2Vω ×
∂r
∂s

+ ω × (ω × r) + ω
.
× r − 2V ∂vrel

∂s
+ V 2 ∂ 2r

∂s2             (8) 

This complex expression can be given more compact form if we introduce a differential 
operator D, which follows the motion of the point in the rotating frame[5]: 

                                                           D =
∂
∂t

−V ∂
∂s

                                                   (9) 

The fact that this operator “follows the motion of the point in the rotating frame” means, 
that the partial time derivative operator only operates on the coordinates of the point (r, 
θ, z), but it gives zero when applied on the base vectors ez, eθ, er. 
The simplified expression for the acceleration is  

                                                                 (10) a = D2r + 2ω × (Dr) + ω × (ω × r) + ω
.
× r

This expression is reminiscent of an analogous expression for acceleration of a point 
object in a rotating frame, with partial time derivatives replaced by the differential 
operator D. 
 

3. DINAMICS 
  
 Newton’s law in the form of F=ma, where F is the force on the body, a the 
acceleration and m the mass of the body, can be used to describe the motion of point 
bodies and the centre-of-mass motion of rigid bodies. Here we are dealing with yarn, 
which is a deformable body, and we want to describe not only the motion of the yarn as 
a whole, but also it’s shape itself [6]. For this reason we partition the yarn in a large 
number of short (infinitesimal) segments of length δs and we apply Newton’s law for 
each individual segment (Fig.2). 

 
Fig. 2 A segment of yarn and forces that act on it. 

 
The three largest forces that act on each segment are: 
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• the air drag for that part of the yarn that forms the balloon (or the force of 
friction for the part of yarn between unwinding and lift-off point on the package, 
which is sliding on lower layers of yarn) 

• the force imparted to the segment by the yarn “attached” to the right end point 
(at arclength s), -T ∂r/∂s(s). Scalar T is the yarn tension, and the force is 
obviously directed along the yarn. 

• the force imparted to the segmend by the yarn “attached” to the left end point (at 
arclength s+∂s), T ∂r/∂s(s+∂s). 

The last two forces are due to internal elastic stress which appear because the yarn is 
being strained. In tridimensional bodies the elastic state is described by a tensor (stress 
tensor), while in a one-dimensional body such as yarn a scalar quantity T (tension) is 
sufficient. It is measured in units of force [N]. 
We can thus write the second Newton’s law for the yarn segment as 

                                    ma = T ∂r
∂s

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (s + δs) − T ∂r

∂s
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (s) + F                                      (11) 

The mass of a segment is m=ρδs, where ρ is the linear density of mass (i.e. mass per 
unit length). We write the external force F as F=fδs, where f is the linear density of 
external force (i.e. external force per unit length). We divide the previous equation by δs 
and we go the limit of infinitesimal length of the segment, δs→0: 

                                  ρa = lim
δs→0

T ∂r
∂s

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (s + δs) − T ∂r

∂s
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (s)

δs
+ f                                   (12) 

                                                                                                                                  
The limit in this expression is by definition the derivative of function T∂r/∂s with 
respect to arc-length s. The final result, the equation of motion for an infinitesimal yarn 
segment, can be written as 

                                                    ρa =
∂
∂s

T ∂r
∂s

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + f                                                (13) 

or, if we take into account the expression for the acceleration, 

                         ρ(D2r + 2ω × Dr + ω × (ω × r) + ω
.
× r) =

∂
∂s

T ∂r
∂s

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + f                   (14) 

 
  4. VIRTUAL FORCES IN A NON-UNIFORMALY ROTATING FRAME  

 
 The D2r term in the equation of motion can be interpreted as the acceleration of a 
point in the rotating coordinate system. The other three terms on the left hand can be 
moved to the right side of the equation and reinterpreted as virtual forces that appear 
due to the non-inertial character of this observation frame. These are not »real« physical 
forces, but rather forces that an observer in a non-inertial frame would feel because of 
inertial effects. To emphasize the difference the virtual forces are also called system 
forces, inertial forces or pseudo-forces. It should be kept in mind that these forces do 
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not appear in equations of motion if they are written in an inertial frame, even if the 
motion of the body itself is accelerated. They only appear when the equations are 
expressed in the form appropriate for a non-inertial obsertvation system. 
The three virtual forces that we're dealing with are: 
 
      1) −ρ2ω × Dr      the Coriolis force 

2) −ρω × (ω × r)      the centrifugal force 

3)      an additional force due to changes of the rotational velocity. −ρω
.
× r

In most of the introductiory textbooks on mechanics the only case that is considered is 
that in which the angular velocity is constant, so that only Coriolis and the centrifugal 
forces appear. For this reason the third force is less known and unfortunately it is often 
neglected even when it plays some role. We were unable to find any mention of this 
virtual force in the available litterature on yarn unwinding and the balloon theory. 
It is interesting to describe how an observer standing on a merry-go-round would feel 
each of these forces. Usually we first notice the centrifugal force; this force »tries« to 
»eject« us from the merry-go-round. Coriolis force can be seen at work when we throw 
an object in the radial direction. As seen from our point of view, the object work fly in a 
straight line as in an inertial frame, but it will deviate in a direction that is perpendicular 
to its velocity. The third force could be felt if the merry-go-round would suddenly come 
to a halt. As our experience tells us, we would most likely fall in this event. This force 
therefore isn't always negligible: it has very sensible effects when the angular velocity 
suddenlty changes. We will now show when this force should be taken into account in 
the balloon theory. 

On cylindrical packages the angular velocity depends on the unwinding speed V, 
the package radius c and on the winding angle φ: 

                                       ω =
V
c

1
cosφ

− tanφ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

=
V
c

cosφ
1− sinφ

                                     (15) 

The unwinding speed and the package radius are approximately constant in the time 
interval required to unwind a few layers of yarn. On the other hand, the winding angle φ 
is different in each layer of a cross-wound package: it is approximately constant when 
the unwinding point is in the middle of the package and it changes sign near the edges 
of the package. Variations of φ lead to sudden changes of angular velocity near the 
edges.  

We have performed numerical simulations of unwinding from both cylindrical 
and conic packages.  We show the time dependence of the position of the unwinding 
point z(t), the radius of the package at the unwinding point c(t), the winding angle φ(t) 
and the dimensionless angular velocity Ω(t) = c ω/V for a cylindrical (full line) and a 
conic package (dashed line, see Fig.3. 
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Fig. 3 Results of simulation of unwinding from cylindrical and conic packages. 

 
We indeed see that when the unwinding point is in the middle of the package, the 
conditions are changing slowly with time. The quasi-stationary approximation can then 
be applied, as is done in most of the theoretical works devoted to yarn unwinding. The 
time dependence is shifted to the boundary conditions while the equation of motion is 
simplified to: 

                            ρ V 2 ∂ 2r
∂s2 − 2Vω ×

∂r
∂s

+ ω × (ω × r)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

∂
∂s

T ∂r
∂s

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + f                           (16) 

Near the front and read end of the package the conditions quickly change from two 
different quasi-stationary regimes. The third non-inertial force can then become a very 
large quantity. In the figure 4 we show directions of virtual forces at both edges of a 
cylindrical package: 

 
Fig. 4 Virtual forces on the yarn during unwinding 
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Using a simple calculation we can show that this force has larger effect when the 
winding angle φ0 is high: 

                       Δω = ωmax −ωmin =
V
c

cosφ0

1− sinφ0

−
V
c

cos(−φ0)
1− sin(−φ0)

=
2V
c

tanφ0                  (17) 

We can thus safely neglect this force in parallely-wound packages, however we should 
be careful when using quasi-stationary approximation to describe cross-wound packages. 

 
5. CONCLUSIONS 

  
 We have shown crucial steps in the derivation of the equation of motion of yarn: 
the introduction of the non-uniformly rotating observation frame, the calculation of 
velocity and acceleration and the application of Newton’s second law to an infinitesimal 
segment of yarn. The origin of the virtual (system) forces was described. We’ve 
emphasized the role of the lesser known virtual force that can have important effects 
near the edges of a package. 
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