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Abstract- Variational iteration method is applied to solve a class of delay differential-
algebraic equations. The obtained sequence of iteration is based on the use of Lagrange 
multipliers. The corresponding convergence results are obtained and successfully 
confirmed by some numerical examples.  
 
Keywords- Delay Differential-Algebraic Equations, Variational Iteration Method, 
Convergence 

 
1. INTRODUCTION 

 
The variational iteration method (VIM) was first proposed by He [1, 2], and 

has been extensively discussed by many authors [3-10]. Applications of this method 
have been enlarged due to its flexibility, convenience and efficiency. Some authors have 
applied VIM to delay differential equations [7] and differential-algebraic equations [3], 
but VIM for delay differential-algebraic equations (DDAEs) has not been considered. In 
fact, DDAEs are a very important class of mathematical models and often arise from the 
fields of computer aided design, circuit analysis, mechanical systems, etc. Some results 
in theoretical analysis and numerical solutions of DDAEs have been given, which 
include stability of Runge-Kutta methods for neutral delay integro-differential-algebraic 
equations [11], the classical convergence results of BDF methods and Runge-Kutta 
methods for index-2 DDAEs [12] and collocation methods for retarded differential-
algebraic equations [13]. In this paper, we apply VIM to a class of DDAEs to obtain 
approximate analytical solutions. The convergence results of the VIM for DDAEs are 
obtained. Some illustrative examples confirm the theoretical results. 
 

2. MAIN RESULTS 
  

Consider the initial value problem of a DDAE 

1 2

'( ) ( ( ), ( ( )), ( ), ( ( ))), 0 ,
0 ( ( ), ( ( )), ( )),                             0 ,
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g x t x t y t t T

x t t t y t t t
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where the delay functions ( )tα  and ( )tβ  satisfy 1 2( ) ,  ( ) ,t t t tτ α τ β− ≤ ≤ − ≤ ≤  :f 1nR  
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1 2 2 1 1 1 2,  :n n n n n n n 2nR R R R g R R R R× × × → × × →  are smooth vector functions on the real 
Euclidean spaces  and have  bounded derivatives, the initial value functions 1:[ ,0]ϕ τ−  

1nR→ and 2
2:[ ,0] nRψ τ− → are continuous, ( ( ), ( ( )), ( ))yg x t x t y tα is invertible and 

bounded in a neighbourhood of the true solution. We assume that the problem (1) has a 
smooth solution ( ),  ( )x t y t .  Throughout this paper,  ⋅  denotes the standard  Euclidean 

norm, and the matrix norm is subordinate to ⋅ . 
According to the VIM, we can construct the correction functional as follows  

1 0
( ) ( ) ( , )( ( ) ( ( ), ( ( )), ( ), ( ( )))) ,

t

n n n n n n nx t x t s t x s f x s x s y s y s dsλ α+ ′= + −∫ β       (2a) 

1 1 10 ( ( ), ( ( )), ( )),n n ng x t x t y tα+ + +=                                                                   (2b) 

where ( , )s tλ  is a general Lagrange multiplier, which can be defined optimally by 
variational theory, and f  denotes the restrictive variation, i.e., 0fδ = . Thus, we have 

1 0
( ) ( ) ( , )( ( )) ,

t

n n nx t x t s t x s dδ δ λ δ+ ′= + ∫ s  

and the stationary conditions are obtained as  

( , )1 ( , ) 0,       0.
s t

s ts t
s

λλ
=

∂
+ =

∂
=  

Moreover, the general Lagrange multiplier can be readily identified by ( , ) 1.s tλ = −   
Therefore, the variational iteration formula can be written as 

1 0
( ) (0) ( ( ), ( ( )), ( ), ( ( ))) ,

t

n n n n n nx t x f x s x s y s y s dsα β+ = + ∫                     (3a) 

1 1 10 ( ( ), ( ( )), ( )).n n ng x t x t y tα+ + +=                                                          (3b) 

Theorem 1  Let Then 
the sequences  defined by (3) with 

1 21 1
1 2( ),  ( ) ( [ , ]) ,  ( ),  ( ) ( [ , ]) , 0,1, .n n

i ix t x t C T y t y t C T iτ τ∈ − ∈ − =

1{ ( )} ,{ ( )}n n n nx t y t∞
= 1

∞
= 0 1( ) ( ),  0,x t t tϕ τ= − ≤ ≤  

0 2( ) ( ),  0y t t tψ τ= − ≤ ≤  converge to the solution of (1). 
Proof.   From the system (1), we obviously have 

0
( ) (0) ( ( ), ( ( )), ( ), ( ( ))) ,

t
x t x f x s x s y s y s dsα β= + ∫                               (4a) 

0 ( ( ), ( ( )), ( )).g x t x t y tα=                                                                    (4b) 

Introduce  where  ( ) ( ) ( ),  ( ) ( ) ( ),  0,1, ,i i i iE x t x t x t E y t y t y t i= − = − = ( ) ( )i iE x t E y t=
0,  0,  0,1, .t i= < =  From (3)-(4), we obtain 

1 0
( ) ( ( ( ), ( ( )), ( ), ( ( ))) ( ( ), ( ( )), ( ), ( ( )))) ,

t

n n n n nE x t f x s x s y s y s f x s x s y s y s dsα β α β+ = −∫  

1 1 10 ( ( ), ( ( )), ( )) ( ( ), ( ( )), ( )).n n ng x t x t y t g x t x t y tα α+ + += −  
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Based on the fact that the functions ,f g  are smooth and the matrix yg  is invertible, we 
deduce 

1 1 2 3 40
( ) ( ( ) ( ( )) ( ) ( ( ))) ,

t

n n n n nE x t f E x s f E x s f E y s f E y s dsα β+
′ ′ ′ ′= + + +∫         (5a) 

1 1
1 3 1 1 3 2 1( ) ( ) ( ) ( ) ( ( )),n n nE y t g g E x t g g E x tα− −
+ + +′ ′ ′ ′= − −                                      (5b) 

where  denotes the partial derivative of  the function ( 1, 2,3, 4)if i′ = f  to  variable, 
 denotes the partial derivative of  the function g  to ith  variable. We can 

derive 
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∫ ∫
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where 1 1
3 1 3 2max , ( 1, 2,3, 4),   max( ( ) , ( ) ).i il f i k g g g g− −′ ′ ′ ′ ′= = =  Therefore 
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                                          (6) 

Moreover, we have 

1

2

0

0

max ( )( ) ( ) .
!( ) max ( )

n n
s Tn

n s T

E x sE x t T
nE y t E y s

τ

τ
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                                 (7) 

where  
1 2

0 0,  ,  max ( ) ,  max ( ) ,  ,  ,  ( 1, 2,3,4)is T s T
T E x s E y s k l i

τ τ
τ

− ≤ ≤ − ≤ ≤
=  are constants, ρ  is the 

spectral radius of the last matrix in the above inequality (6). By using the Stirling's 
formula, we have 

1

2
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thus, ( ( ) , ( ) )T
n nE x t E y t → 0  as  .n→∞
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3. ILLUSTRATIVE EXAMPLES 
 

In this section, some illustrative examples are given to show the efficiency of the 
VIM for DDAEs.  
Example 1  Consider the following  initial value problem 

2 2 2
2 2

2
2

'( ) ( ) 2 ( ) ( ),          0,

1 2 ( ) ( ),                              0,
(0) 1,   (0) 0.

t t

t

y t y t y x t

y x t t
x y

⎧ = − + ≥
⎪
= + ≥⎨

⎪ = =⎩

                                (9) 

We apply the VIM to (9), and construct the correction functional 

2 2 2
1 2 20
( ) (0) ( ( ) 2 ( ) ( )) ,

t
s s

n n n n ny t y y s y x ds+ = + − +∫                                 (10a) 

2
1 121 2 ( ) ( ).t

n ny x+ += + t                                                                       (10b) 

Moreover, the iteration sequence starts with the initial approximations 0 ( ) ,   y t t=   

0 ( ) (0) 1,x t x= =  and is obtained from (10) as follows 

31
1 6

2 4 62 1
1 3 18

3 5 7 71 11 11
2 6 120 1152

2 4 6 8 8192 11
2 3 45 480

3 5 7 9 9431 131 1
3 6 120 20160 40960

2 4 6 86 403 1488612
3 3 45 5040 9676

( ) ,

( ) 1 2 ,

( ) ( ),

( ) 1 2 ( ),

( ) ( ),

( ) 1 2

y t t t

x t t t t

y t t t t t o t

x t t t t t o t

y t t t t t t o t

x t t t t t

= +

= − − −

= − + + +

= − + − + +

= − + + − +

= − + − − + 10 10
800 ( ),

       
t o t+

 

From the above iteration sequence, we can show that  

lim ( ) sin( ),        lim ( ) cos(2 ).n nn n
y t t x t t

→∞ →∞
= =                               (11) 

Example 2  Consider the following  initial value problem 

2
2 2

2

'( ) 2 ( ) 2 ( ),                  0,

'( ) 2 ( ) ( ) ( ),           0,
0 ( ) ( ) ( ),                        0,

(0) 1,   (0) 0,   (0) 1.

t

t

x t y z t t

y t x t z z t t
y t x t z t t

x y z

= − + ≥⎧
⎪

= − + ≥⎪
⎨

= − ≥⎪
⎪ = = =⎩

                              (12) 

The exact solution of the system (12) is 
2 3 4 5 51 1 1 1

2 3 8 30

2 3 4 52 2 2
3 3 5

2 3 4 5 51 1 1 1
2 6 24 120

( ) (1 ) 1 ( ),

( ) (1 ) 1 ( ),

( ) 1 ( ).

t

t

t

5

x t t e t t t t o t

y t t e t t t t o t

z t e t t t t t o t

−

−

−

= + = − + − + +

= + = − + − + +

= = − + − + − +
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We apply the VIM to (12), and construct the correction functional 

1 20
( ) (0) ( 2 ( ) 2 ( )) ,

t
s

n n n nx t x y z s ds+ = + − +∫                                        (13a) 

2 2
1 20
( ) (0) ( 2 ( ) ( ) ( )) ,

t
s

n n n n ny t y x s z z s ds+ = + − +∫                                 (13b) 

1 1 10 ( ) ( ) (n n n ).y t x t z t+ + += −                                                              (13c) 

Moreover, the iteration sequence starts with the initial approximations   0 ( ) (0) 1,x t x= =

0 0( ) (0) 1,  ( ) (0) 1,y t y z t z= = = =  and is obtained from (13) as follows 

1

1

1
21

2 2
31

2 6
2 3 4 41 1 1

2 2 3 4
2 3 41 1 1

3 2 3 96
3 4 5 57 232

3 3 16 160

2 3 4 5 55 71 1
3 2 6 32 60

21 1
4 2 3

( ) 1,
( ) 1 ,
( ) 1 ,

( ) 1 ,

( ) 1 ,

( ) 1 ( ),

( ) 1 ,

( ) 1 ( ),

( ) 1 ( ),

( ) 1

x t
y t t
z t t

x t t

y t t t

z t t t t t o t

x t t t t

y t t t t t o t

z t t t t t t o t

x t t t

=
= −
= −

= −

= − +

= − + − + +

= − + +

= − + − + +

= − + − + − +

= − + 3 4 5 6 67 231
8 640 15360

3 4 5 6 6163 652 2
4 3 3 480 576

2 3 4 5 6 689 1971 1 1
4 2 6 24 1920 5120

( ),

( ) 1 ( ),

( ) 1 ( ),
      

t t t o t

y t t t t t t o t

z t t t t t t t o t

− + − +

= − + − + + +

= − + − + − + +

 

The above iterate sequence shows that the VIM yields a very good approximation to the 
exact solution.  
           

4. CONCLUSIONS 
 

In this paper, we successfully apply VIM to a class of DDAEs and obtain 
highly accurate solutions with few iterations. VIM handles DDAEs without any especial 
assumption on the delay item, thus, it is a promising method for DDAEs. 
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