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Abstract- Based on an elastic rub-impact model, a dynamic model of a rubbing rotor 
system with an initial deflection was set up and motion equations were derived and 
solved numerically. Poincaré maps, rotor orbits and bifurcation diagrams were drawn to 
investigate the effects of the initial deflection distance and the initial deflection angle on 
the vibration features of the rub-impact rotor system. The paper concluded that the 
initial deflection had great influence on the motion forms of the rubbing rotor system.  
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1. INTRODUCTION 

The rotor-stator rub is one of the main faults for large rotary machines, and lots of 
research work has been done by many researchers [1-5]. However, vibration 
characteristics of a rubbing rotor system with the initial deflection have rarely been 
studied especially in the published literatures. In this paper, a more general model of a 
rub-impact rotor system is set up in light of the elastic impact theory, so as to research 
the effect of the initial deflection on the vibration characteristics of a rubbing rotor 
system. Both the initial deflection length and the initial deflection angle are included in 
the model. Numerical calculation is utilized to solve the governing equations and the 
simulation results are given in the form of bifurcation diagrams, Poincaré maps and 
rotor orbits. Rotating speeds, the initial deflection length and the initial deflection angle 
are separately chosen as important parameters to carry out the research.  

2. MATHEMATICAL MODEL OF THE RUBBING ROTOR SYSTEM  

A two-degree-of-freedom model of a Jeffcott rotor system with the initial 
deflection is analyzed in this paper, as shown in Fig. 1. A disk of mass M, with an 
eccentricity e, is mounted on a massless flexible shaft and rotates inside the fixed stator 
with a clearance δ  from the disk when there is no deflection for the shaft. Due to 
existence of the clearance between the rotor and the stator, the rotor may contact the 
stator intermittently during operation, causing complex dynamic behaviors. 
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Fig.1 Schematic of the rub-impact rotor system model 

      
Fig.2 Schematic of the rub and impact forces 

To derive governing motion equations, the co-ordinate system is chosen as shown 
in Fig. 2. In the static equilibrium, the center of the stator 0sO  and the rotor center  
are separated by an initial deflection length rs with an initial deflection angle

0rO
β . 

Therefore, when the rotor is placed concentrically within the stator, 0sr β= = . 
According to the rubbing situation, the analysis of the rubbing rotor system can be 

divided into two stages. When the rotor center vibrates within the clearanceδ , the rub 
doesn’t happen. The main force exerting on the rotor is the elastic restoring force from 
the flexible shaft deformation. When the displacement of the rotor center is beyond the 
clearance, the rub happens. Then except for the elastic restoring force from the flexible 
shaft, due to the rub an elastic restoring force  from elastic deformation of the rotor 
and the stator, and a tangential frictional force  utilizing the model of Coulomb type 
of frictional force are also created and act on the rotor as shown in Fig. 2. 
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The radial rub force  and the tangential frictional force  can be expressed 
as  
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where μ  is the friction coefficient between the rotor and the stator, sK is the stator 
stiffness, and 2 2

0 0R ( ) ( )x x y y= − + − . And 0 0( , )x y  is the coordinate of the stator 
center with 0 cossx r β= , and 0 sinsy r β= .  

In the oxy co-ordinate system，the dynamic governing equations for the rubbing 
system are: 
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 2 cos( )xMx cx F Me t α+ + = Ω Ω +  (2) 
 2 sin( )yMy cy F Me t α+ + = Ω Ω +  (3) 

When R δ<  
 0cosxF KR Kxψ= +  (4) 
 0sinyF KR Kyψ= +  (5) 

where K is rotor stiffness, 0cos ( ) /x x Rψ = − , and 0sin ( ) /y y Rψ = − . 
When R δ≥  
 0cos sin (1 )[( ) ( )]x N T sF F F K R x x y y0ψ ψ δ μ= − + = − − − − −  (6) 
 0sin cos (1 )[ ( ) ( )]y N T s 0F F F K R x x y yψ ψ δ μ= − + = − − + + +  (7) 

When nondimensionalized, the governing equations are as follows. 
When , the rub between the rotor and stator doesn’t happen. The governing 

equations are: 
ˆ 1z <

 2ˆ ˆ ˆ'' 2 ' cos( )x vx x T aεω ω+ + = +  (8) 
 2ˆ ˆ ˆ'' 2 ' sin( )y vy y T aεω ω+ + = +  (9) 

When , the rub happens. The governing equations are: ˆ 1z ≥

 2
0 0

ˆˆ ˆ ˆ ˆ ˆ ˆˆ'' 2 ' (1 1 )[( ) ( )] cos( )x vx K z x x y y T aμ εω ω+ + − − − − = +  (10) 

 2
0 0

ˆˆ ˆ ˆ ˆ ˆ ˆˆ'' 2 ' (1 1 )[ ( ) ( )] sin( )y vy K z x x y y T aμ εω ω+ + − − + − = +  (11) 

in which, 0 K Mω =  is the undamped natural frequency of the rotor system,  the 
rotor rotating speed, 

Ω

0ω ω= Ω , T tω= , ' /d dT= , 0c 2v Mω= , x̂ x δ= , ŷ y δ= , 
2 2 2 2

0 0 0 0ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( )z R x x y y x x y yδ δ= = − + − = − + − , eε = δ , 0 0x̂ x δ= , 0 0ŷ y δ= , 
ˆ

sK K K= , and c the damping. 

3. NUMERICAL SIMULATION AND ANALYSIS 

Since the nondimensional governing motion equations have been obtained above, 
they are transferred into a set of first order differential equations . Then the 
fourth-order Runge-Kutta method is used to integrate this set of equations. According to 
the analysis need, some parameters can be used as the control parameters such as the 
rotor rotating speed, and the initial deflection, while other parameters keep fixed during 
every time of calculation. To get the stable result, a small integration step has to be 
chosen to avoid the numerical divergence at the point where derivatives of 

( )u f u=

xF  and yF  
are discontinuous. In this paper, the integration step is chosen to be 2 / 500π , i.e., 
within one period, there are 500 times of integral calculation. Generally, long time 
marching computation is required to obtain convergent values. During every calculation, 
results of the first 500 periods are abandoned, and then results of the next 100 periods 
are chosen to carry out various kinds of analysis. To study effect of the initial deflection 
on vibration characteristics of the rubbing rotor system, bifurcation diagrams, Poincaré 
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maps and rotor orbits are employed. They are all useful and effective ways to 
illustrate the motion behaviors of the rotor system.   

3.1. Effect of the Initial Deflection Length 
The parameters used during the computations are 0.1096v = , ,ˆ 6.667K = 0.6ε = , 

/ 2β π= , and 0.0α = . Bifurcation diagrams, Poincaré maps and rotor orbits using the 
initial deflection length /sr δ  as the control parameter at different rotating speed ratios 
ω  are drawn and analyzed as in Fig.3-Fig.8. 

 
Fig.3 Bifurcation diagram with 1.2ω =  

 

         

Fig.4 Poincaré map and rotor orbit when 1.2ω =  and  / 0.sr δ = 6

 
Fig.5 Bifurcation diagram with 2.8ω =  
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Fig.6 Poincaré map and rotor orbit when 2.8ω =  and  / 0.sr δ = 6

 
Fig.7 Bifurcation diagram with 4.8ω =  

   
Fig.8 Poincaré map and rotor orbit when 4.8ω =  and  / 0.sr δ = 6

From above figures, it’s obvious that under different rotor rotating speeds, the 
bifurcation diagrams using the non-dimensional initial deflection length /sr δ  as the 
control parameter are quite different. When the speed is low as shown in Fig.3 , 
withω =1.2 and within the range /sr δ =0.2-1.0, the motion is synchronous with 
period-1 as illustrated in Fig.4 in detail, where Poincaré map is an isolated point and the 
rotor orbit is a circle. This periodic motion means that the rub doesn’t happen with these 
system parameters. When the initial deflection length further increases and reaches 
about 0.8, the bifurcation phenomenon happens and the motion changes from 
synchronous period-1 to period-3 and even becomes chaotic. After that, the motion 
return period-1 and eventual period-2. With the increase of the rotor speed as ω＝2.8 
in Fig.5, comparing Fig.5 with Fig.3, it is obvious that the period-1 motion range 
becomes smaller. When /sr δ  reaches about 0.35, the period-1 motion becomes 
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chaotic as further explained in Fig.6, where Poincaré map has fractal structure and 
the orbit is irregular. Under the high speed like ω =4.8 in Fig.7, the motion has no 

periodic stage and always keeps quasi-periodic and even chaotic as shown in Fig.8, 
where Poincaré map is a closed circle which means the motion is quasi-periodic.  

3.2. Effect of the Initial Deflection Angle 
The parameters used during the computations are 0.1096v = , , , ˆ 6.667K = 1.0sr =

0.6ε = , and 0.0α = . Using the rotating speed ratio as the control parameter, the 
bifurcation diagrams, Poincaré maps and rotor orbits with different initial deflection 
angles are drawn and analyzed as in Fig.9-Fig.14. 

 
Fig.9 Bifurcation diagram with 0.0β =  

      

Fig.10 Poincaré map and rotor orbit when 3.5ω = and 0.0β =  

 
Fig.11 Bifurcation diagram with / 4β π=  
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Fig.12 Poincaré map and rotor orbit when 3.5ω = and / 4β π=  

 
Fig.13 Bifurcation diagram with / 2β π=  

 
Fig.14 Poincaré map and rotor orbit when 3.5ω =  and / 2β π=  

Fig.9, Fig.11 and Fig.13 are bifurcation diagrams using the rotor speed as the 
control parameter with various initial deflection angles β =0.0, / 4π  and / 2π  
respectively. Due to different initial angles, different forms of motions can be clearly 
seen in these diagrams.  

In Fig.9, within the speed range ω＝0.2-2.45, the motion is synchronous with 
period-1. However, in Fig.11 and Fig.13, especially in Fig.13 when ω  is about 1.2, 
there is an obvious bifurcation phenomenon, where the motion changes from period-1 to 
period-2 and then period-1 again. In these three figures, for the range ω＝3.5-4.5, the 
motions are also quite different. For detailed analysis, when ω＝3.5 for 0.0β = , the 
motion is synchronous with period-4 as further illustrated in Fig.10, where the Poincaré 
map has four isolated points and the rotor orbit has four closed circles. When ω＝3.5 
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for / 4β π= , the motion is synchronous with period-2 which can be proved in 
Fig.12, where the Poincaré map has two isolated points and the rotor orbit has two 

closed circles. When ω＝3.5 for / 2β π= , as shown in Fig.14, the motion is also 
synchronous with period-4, but the rotor orbit shape is different with the one in Fig.10. 
There is one big difference for these three bifurcation diagrams. For 0.0β =  after ω＝

3.5, the motion keeps chaotic. While for / 4β π= and / 2β π= , after ω＝5.8, the 
motion changes from chaotic style to period-1. 

4. CONCLUSIONS 

(1) Based on the classic impact model, the rubbing rotor model with the initial 
deflection is set up, the governing equations are derived and finally the numerical 
simulation is carried out for the analysis of effect of the initial deflection on vibration 
characteristics of the rubbing rotor system. 

(2) From the analysis, with different initial deflection lengths, when the rotor 
rotating speed is low, the motion is synchronous with period-1 until the initial deflection 
becomes too large, leading to bifurcation and chaotic motions. With the increase of the 
speed, the rubbing begins to happen under smaller speeds, and the motion becomes 
quasi-periodic and even chaotic.  

(3)With different initial deflection angles, the system motion styles are quite 
different, which proves that the initial deflection angle has big influence on the rubbing 
rotor system.  
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