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Abstract- In this paper, we derive a delayed reaction-diffusion equation to describe a 
two-species predator-prey system with diffusion terms and stage structure. By coupling 
the uniformly approximate approach with the method of upper and lower solutions, we 
prove that the traveling wave fronts exist, which connect the zero solution with the 
positive steady state. Finally, we draw a conclusion that the existence of traveling wave 
fronts for the delayed reaction-diffusion equation is an interesting and difficult problem. 
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1. INTRODUCTION 
 
 Delay ordinary differential equations (also called by retarded functional 
differential equations) have been extensively studied by many authors, such as [2], [3], 
[4], [7], [10] and so on. Recently, a two-species predator-prey system described by a 
delayed ordinary differential equation was considered in [9], where the delay means the 
stage for the prey population. We remark that the above mentioned models did not 
consider the effect of diffusion on the stability of the equilibrium and traveling wave 
fronts. However, the specie's diffusion is a natural tendency to move into areas of 
smaller population density.  So we follow the normal technique to handle with the 
diffusion (see [3], [5], [6] and [12]) to give the following delayed reaction-diffusion 
equations 
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where NRΩ∈  is open and bounded with smooth boundary ∂Ω , / n∂ ∂  is differentiation 
in the direction of the outward unit normal,  represent the immature and 
mature prey population densities at 

1 2( , ), ( , )u x t u x t
x -space and t -time, respectively;  represents 

the density of predator population at
( , )v x t

x -space and t -time;  is the transformation 
coefficient of mature predator population; 

1a
 represents the transformation of immature 

to mature;  is the birth rate of the immature prey population; is the 
harvesting effort of the prey species;

0h ≥
0β >  represents the death and overcrowding rate 

of the mature prey population. And the constants  And the constant 
is positive, and the initial functions 

1 20, 0, 0.r a b> > >
( 1,2,3iD i = ) 1 3( ,0), ( ,0)x xϕ ϕ  are continuous in 

Ω and 2 ( , )x tϕ  is continuous in [ ,0]τΩ× − .   

In this paper, we aim to study the dynamical behaviors of the system (1). Note 
that  and  of the system (1) are independent of , so we obtain the 
dynamical behaviors of the system (1) by studying the following system 
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where  and 1 2( , ), ( , )u x t u x t 1 2( , ), ( , )x t x tϕ ϕ  denote  and  2 ( , ), ( , )u x t v x t 2 3( , ), ( , )x t x tϕ ϕ  
of the system (1), respectively. For this single specie model of [10], S.A. Gourley and Y. 
Kuang pointed out that the existence of wave front solutions is an open question. 
Motivated by the results of [10], we study the existence of traveling wave fronts of the 
two-species delayed system (2). The key idea is to couple the uniformly approximated 
approach introduced by J. Canosa in [1] with the method of upper and lower solutions. 
The method to construct the upper and lower solutions of the system (2) is derived from 
the idea of [11]. The remaining parts of the paper are organized as follows. In section 2, 
we study the locally asymptotical stability of the constant equilibrium and the existence 
of traveling wave fronts of the system (2). Finally, we draw a conclusion. 
 

2. DYNAMICAL BEHAVIORS OF THE SYTEM (2) 
 

It is easy to check that the system (2) has only three nonnegative constant 
solutions: and the positive equilibrium1 2(0,0), (( ) / ,0)E E e hγτα − − β 3 1 2( , )E c c∗ ∗  as 
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− −− + − −∗ ∗
+= = .β

β+  Using the linearization 
technique ([8] or [12]) and omitting the detailed derivation ( [12]), we have 
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Theorem 2.1 The equilibrium  of the system (2) is unstable; if 1(0,0)E

2 ,a e h rγτ
1α β− − ≥  then the equilibrium  is unstable; if 2 (( ) / ,0)E e hγτα − − β

12 ,a e h rγτα β− − > the positive equilibrium 3 1 2( , )E c c∗ ∗  is locally asymptotically stable. 

Next, we study the existence of traveling wave solution for the infinite spatial 
. To seek a pair of traveling wave fronts of the system (2), we set  ( ,x∈ −∞ +∞)

1 1( , ) ( )u x t sφ=  and 2 2( , ) ( ),u x t sφ=  where s x ct= +  and  is the wave speed. 
Substituting 

c

1( )sφ  and 2 ( )sφ  into the system (2), we have 
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Let , for the large values of the wave speed 21 / cθ = , then θ  is a small parameter. 
Denote / ,s s cη θ= =  under the transformation ( ) ( ) ( 1,2)i is iφ ψ η= = , then the 
system (3) becomes 
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Let 1 10 11 2 20 21( , ) , ( , ) ,ψ η θ ψ θψ ψ η θ ψ θψ= + + = + +  and substitute into (4) and 
group the same powers of θ , denote 0 ( )iψ η  by ( ) ( 1,2)i iψ η = , respectively, then we 
have 
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Theorem 2.2 If 2 ,a e h rγτ
1α β− − >  then the system (5) has at least one non-decreasing 

positive solution 1 2
1 1( ( ), ( )) ( , )T C R R .ψ ψ η ψ η= ∈  

Proof. To prove the theorem, we need to check that a quasi-monotone condition (see [7] 
or [11]) holds and show that there exists a pair of upper and lower solutions 
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Letting 1 2( , )Tδ δ δ= , for arbitrary satisfying 2, ([ ,0];Cφ ψ τ∈ − )R )0 ( ) (ψ η φ η≤ ≤ , we 
easily obtain  

( ) ( ) ( (0) (0)) ( )( (0) (0)) 0,c cf f Iφ ψ δ φ ψ δ φ ψ− + − ≥ −Β − ≥                        (7) 

where I  is a  identity matrix, 2 2× 1 1 2 1 1 2(2 , 2 ),B diag c a c hc r bcβ ∗ ∗ ∗ ∗= + + +  

1 1e cγτδ α β− ∗≥ + and   2 1 22r bcδ ∗≥ + .

Next, we show that there exists a pair of upper and lower solutions. To do that, we 
introduce the following set 
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Case ii: 0.η <  Using (8) and (9), we have 
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 is a pair of lower solutions.  

Therefore, if 2 ,a e rγτα β− >  from [11] we know that there exists at least one solution in 
the set Γ . The proof of the theorem is completed.  
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3. CONCLUSION 
 

In our work, we prove the existence of traveling wave fronts for the two-species 
model for large values of the wave speed . The system (2) is a new model and the 
method to prove the existence of traveling wave fronts is also novel, and it is effective 
to deal with the case of large wave speeds, which  is deserved future study. 
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