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1. INTRODUCTION

A group classification for a general second-order system of diffusion equations

based on Lie algebras of low dimension was performed in [1]. We follow exactly the

procedure used in this classification for the current problem. Briefly, the classifica-

tion procedure involves the utilization of the structure of the low-dimensional Lie

algebras and the Lie algebras of higher dimension to find the symmetry operators

admitted by the underlying equation or system. The procedure is continued until

the functional forms of the unknown functions are completely specified. That is,

the equivalence group is used to obtain the canonical forms of the symmetry opera-

tors which satisfy the model under consideration. Even though this procedure was

suggested in [2, 3] for partial differential equations (PDEs), a much earlier work on

ordinary differential equations (ODEs) using these ideas was done in [4]. We use

the results on classification of solvable Lie algebras by Mubarakzyanov [5] reported

in Basarab-Horwarth [3].

The theory of coupled diffusion appears in the works of Philip and De Vries [6],

De Vries [7] in the late fifties and later by many authors, such as Jury et al [8].

1Permanent address: Department of Mathematics and Computer Science, National University

of Lesotho, P O Roma 180, Lesotho.
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The coupled diffusion is described by the partial differential equations [9, 10, 11],

i.e.,

ut =
[
f 1(u, v)ux + f2(u, v)vx

]
x
,

(1)

vt =
[
f 3(u, v)ux + f4(u, v)vx

]
x
,

where u(t, x) and v(t, x) are the soil temperature and volumetric water content

respectively. The variable x measures the depth of the soil and t is the time. The

arbitrary functions f1, . . . , f 4 are the diffusion coefficients.

Wiltshire et al [11, 13] investigated the Lie symmetries of a simplified model of

the coupled diffusion system (1) written in the form

yt = [Λ(y)yx]x , y = {yi} (i = 1, 2, . . . , n), (2)

where Λ(y) is a square matrix of diffusion coefficients. These investigations involve

rewriting a system of coupled diffusion equations into a single equation in which the

diffusion coefficients are written in a matrix form. Thus the resulting determining

equations to be solved for symmetries are in terms of the systems of matrix equations.

The matrix diffusion equation (2) is a generalized form of the extensively studied

one-dimensional nonlinear heat conduction equation the group properties of which

were first considered in [12]. Therefore the group classification procedure on Eq. (2)

is analogous to the analysis performed in the cited reference and those that followed.

In this work, our goal is to derive the Lie symmetries of system (1) as it is and

see whether a comparison with those of the simplified model (2) can be established.

The non classical (potential) symmetries of the coupled system (1) were generated

in [13]. The generation of the determining equations and the manipulation of them

are with the aid of the YaLie software package [14].

2. EQUIVALENCE GROUP AND GENERATOR OF SYMMETRY

The equivalence group for system (1) was obtained in [10] using the infinitesimal

approach. It can shown that the direct method yields the same result. However,

instead of using these equivalence transformations we choose the equivalence group

of the form

t̄ = T (t), x̄ = X(x), ū = U(u, v), v̄ = V (u, v), (3)

where the functions T , X, U and V satisfy the conditions

Tt ̸= 0, Xx ̸= 0,
D(U, V )

D(u, v)
̸= 0.
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Using the basic Lie technique [15, 16, 17] we seek a symmetry generator of the

form

Γ = ξ1(t, x, u, v)∂t + ξ2(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v. (4)

The operator Γ is a generator of symmetry group of system (1) if and only if

Γ[2]
(
ut − f1uxx − f 2vxx − ux

[
f1
uux + f 1

v vx
]
− vx

[
f 2
uux + f 2

v vx
])

= 0,

(5)

Γ[2]
(
vt − f 3uxx − f4vxx − ux

[
f 3
uux + f 3

v vx
]
− vx

[
f4
uux + f 4

v vx
])

= 0

whenever system (1) is satisfied and where

Γ[2] = Γ + ζ11∂ut + ζ12∂ux + ζ21∂vt + ζ22∂vx + ζ122∂uxx + ζ222∂vxx . (6)

The variables ζ ij are given by the prolongation formulae

ζ11 = Dt(η
1)− utDt(ξ

1)− uxDt(ξ
2),

ζ12 = Dx(η
1)− utDx(ξ

1)− uxDx(ξ
2),

ζ21 = Dt(η
2)− vtDt(ξ

1)− vxDt(ξ
2), (7)

ζ22 = Dx(η
2)− vtDx(ξ

1)− vxDx(ξ
2),

ζ122 = Dx(ζ
1
2 )− utxDx(ξ

1)− uxxDx(ξ
2),

ζ222 = Dx(ζ
2
2 )− vtxDx(ξ

1)− vxxDx(ξ
2),

where Dt and Dx are the total derivative operators defined as follows

Dt = ∂t + ut∂u + vt∂v + · · · , Dx = ∂x + ux∂u + vx∂v + · · · . (8)

With the help of program YaLie the generator of symmetry group for system (1)

is of the form

Γ = a(t)∂t + b(t, x)∂x + c(t, x, u, v)∂u + d(t, x, u, v)∂v, (9)

where a, . . . , d are the smooth differentiable functions satisfying determining equa-

tions resulting from the invariance conditions (5).

It is not easy to employ the group classification procedure discussed in [17] to

solve completely these determining equations. Therefore we opt for the approach

mentioned earlier in the previous section to perform the complete group classification

up to equivalence group (3).
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3. CLASSIFICATION WITH RESPECT TO LOW-DIMENSIONAL

LIE ALGEBRAS

3.1. One-dimensional Lie algebras

A symmetry generator (9) can be transformed by the change of variables (3) into

the form

Γ̄ = a(t)Ṫ (t)∂t̄ + bX ′(x)∂x̄ + (cUu + dUv)∂ū + (cVu + dVv)∂v̄, (10)

where the overdot and prime denote differentiation with respect to respective argu-

ments and subscripts represent partial differentiation.

We follow an argument similar to that used in [3]. We consider the cases a(t) ̸= 0

and a(t) = 0. If a(t) ̸= 0, then the choice in (3) of a function T (t) such that

a(t)Ṫ (t) = 1 and functions X, U , V of the fundamental solutions of the system of

PDEs

bX ′ = 0, cUu + dUv = 0, cVu + dVv = 0,

gives rise to Γ → Γ̄ = ∂t̄.

If a(t) = 0, then the choice in (3) of a particular solution of the PDE bX ′ = 1 as

a function of X and fundamental solutions of the PDEs cUu+dUv = 0, cVu+dVv = 0

as functions of U and V respectively, we have Γ → Γ̄ = ∂x̄. Therefore, when we

drop the bars, the symmetry operator (9) reduces to one of the canonical operators

Γ = ∂t, Γ = ∂x, Γ = ∂u, Γ = ∂v.

Consequently there are four inequivalent realizations of one-dimensional Lie algebras

denoted: A1
1 = ⟨∂t⟩, A2

1 = ⟨∂x⟩, A3
1 = ⟨∂u⟩ and A4

1 = ⟨∂v⟩. The superscript distin-

guishes one realization from the other while the subscript denotes the dimension of

the Lie algebra.

3.2. Two-dimensional Lie algebras

There are two inequivalent two-dimensional solvable Lie algebras: A2,1 : [e1, e2] =

0, A2,2 : [e1, e2] = e2. These algebras contain the 1D Lie algebras A1
1 = ⟨∂t⟩,

A2
1 = ⟨∂x⟩, A3

1 = ⟨∂u⟩ and A4
1 = ⟨∂v⟩. Hence in search for realizations of the 2D Lie

algebras there are four cases to consider: ⟨∂t, e2⟩, ⟨∂x, e2⟩, ⟨∂u, e2⟩ and ⟨∂v, e2⟩ where
e2 is of the form (9).

Consider firstly the Lie algebra A2,1.

(a) ⟨∂t, e2⟩: The Lie Bracket [e1, e2] = 0 yields

e2 = b(x)∂x + c(x, u, v)∂u + d(x, u, v)∂v.
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We use the equivalence transformations (3) to simplify e2. Also we need the equiv-

alence group of A1
1 = ⟨∂t⟩: i.e.,

∂t̄ = ∂t(t̄)∂t̄ + ∂t(x̄)∂x̄ + ∂t(ū)∂ū + ∂t(v̄)∂v̄ = Ṫ ∂t̄.

Thus the equivalence transformations for A1
1 are given by

E(∂t) = {t̄ = t+ a1, x̄ = X(x), ū = U(u, v), v̄ = V (u, v)}. (11)

By the use of these transformations e2 is transformed into

ē2 = bXx∂x̄ + (cUu + dUv)∂ū + (cVu + dVv)∂v̄. (12)

According to (12) we have the following realizations of 2D Lie algebras: A1
2,1 =

⟨∂t, ∂x⟩, A2
2,1 = ⟨∂t, ∂u⟩, A3

2,1 = ⟨∂t, ∂v⟩.
(b) Likewise for the case ⟨∂x, e2⟩ we obtain the realizations: A4

2,1 = ⟨∂x, ∂u⟩, A5
2,1 =

⟨∂x, ∂v⟩. The cases ⟨∂u, e2⟩ and ⟨∂v, e2⟩ lead to the realization A6
2,1 = ⟨∂u, ∂v⟩. This

realization yields a trivial case (i.e. all the arbitrary functions are constants) hence

it is not utilized for further classification.

Therefore we have six inequivalent realizations for the 2D Lie algebra A2,1. The

realizations of Lie algebras A2
2,1, A

4
2,1 and A3

2,1, A
5
2,1 imply that the arbitrary functions

f 1, . . . , f 4 are respectively independent of u and v.

If we proceed in the same manner, the 2D Lie algebra A2,2 has the realizations:

A3
2,2 = ⟨−x∂x − u∂u, ∂x⟩ and A4

2,2 = ⟨−x∂x − v∂v, ∂x⟩. Their corresponding func-

tional forms for the arbitrary functions are given by

A3
2,2: f

1 = u2F (v), f 2 = u3F (v), f 3 = uF (v), f4 = u2F (v).

A4
2,2: f

1 = v2F (u), f 2 = vF (u), f 3 = v3F (u), f4 = v2F (u).

In general the arbitrary functions of their respective arguments are different.

When we look at the above functional forms of the diffusion coefficients, the cases

A3
2,2 and A4

2,2 can be regarded as one case for a choice of equivalence transformations

of the form

t̄ = t, x̄ = x, ū = v, v̄ = u. (13)

3.3. Three-dimensional solvable Lie algebras

The solvable Lie algebras can be classified into decomposable and nondecom-

posable Lie algebras (see Appendix in [3]). There are two realizations for the 3D

decomposable Lie algebra A3,1 obtained from the realization of the 2D Lie algebra

A1
2,1. They are A1

3,1 = ⟨∂t, ∂x, ∂u⟩ and Ã1
3,1 = ⟨∂t, ∂x, ∂v⟩. These realizations satisfy

the consistency conditions for system (1) provided the diffusion coefficients are func-

tions of v and u respectively. There are also two realizations for the 3D Lie algebra
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A3,2. This Lie algebra contains the 2D Lie algebras A3
2,2 and A4

2,2 from which we

obtain Ã3
3,2 = ⟨−x∂x − u∂u, ∂x, u∂u + v∂v⟩ and Ã4

3,2 = ⟨−x∂x − v∂v, ∂x, u∂u + v∂v⟩
respectively. Therefore the respective forms of the diffusion coefficients are

Ã3
3,2: f

1 = k1

(u
v

)2

, f2 = k2

(u
v

)3

, f 3 = k3

(u
v

)
, f4 = k4

(u
v

)2

,

Ã4
3,2: f

1 = k̄1

(v
u

)2

, f2 = k̄2

(v
u

)
, f3 = k̄3

(v
u

)3

, f4 = k̄4

(v
u

)2

,

where k1, . . . , k4 and k̄1, . . . , k̄4 are the nonzero arbitrary constants. Likewise, these

cases can be taken as one case if we make use of the change of variables (13).

Secondly we look at the 3D nondecomposable solvable Lie algebras. The results

are summarized in Table 1. The Lie algebras that do not feature in this table of

results imply that there are no realizations for such Lie algebras which satisfy the

consistency conditions for system (1).

Table 1: 3D nondecomposable solvable Lie algebras.

Algebra f1 f 2 f 3 f 4 Realization

A1
3,5 uF (v) u2F (v) F (v) uF (v) ⟨∂t, ∂x, t∂t + x∂x + u∂u⟩

Ã2
3,5 K1v

−1 K2v
−1 K3v

−1 K4v
−1 ⟨∂t, ∂u, t∂t + u∂u + v∂v⟩

Ã4
3,5 K1v

2 K2v
2 K3v

2 K4v
2 ⟨∂x, ∂u, x∂x + u∂u + v∂v⟩

A1
3,6 u−3F (v) u−2F (v) u−4F (v) u−3F (v) ⟨∂t, ∂x, t∂t − x∂x + u∂u⟩

Ã2
3,6 K1v

−1 K2v
−3 K3v K4v

−1 ⟨∂t, ∂u, t∂t − u∂u + v∂v⟩
Ã4

3,6 K1v
2 K2 K3v

4 K4v
2 ⟨∂x, ∂u, x∂x − u∂u + v∂v⟩

A1
3,7 u2q−1F (v) u2qF (v) u2(q−1)F (v) u2q−1F (v) ⟨∂t, ∂x, t∂t + qx∂x + u∂u⟩

Â1
3,7 u2−qF (v) u3−qF (v) u1−qF (v) u2−qF (v) ⟨∂x, ∂t, qt∂t + x∂x + u∂u⟩

Ã2
3,7 K1v

−1 K2v
q−2 K3v

−q K4v
−1 ⟨∂t, ∂u, t∂t + qu∂u + v∂v⟩

Ā2
3,7 K1v

−q K2v
−q K3v

−q K4v
−q ⟨∂u, ∂t, qt∂t + u∂u + v∂v⟩

Ã4
3,7 K1v

2 K2v
q+1 K3v

3−q K4v
2 ⟨∂x, ∂u, x∂x + qu∂u + v∂v⟩

Ā4
3,7 K1v

2q K2v
2q K3v

2q K4v
2q ⟨∂u, ∂x, qx∂x + u∂u + v∂v⟩

The arbitrary functions F (v) are in general different and Ki are (generally different)

arbitrary constants.

It should be noted that making use of the equivalence transformations (13), the

arbitrary functions depend upon u and the cases for which the diffusion coefficients

are completely specified are in terms of u. This note applies to all the summarized

results in the sequel.



Group Classification of Coupled Diffusion System with Applications 703

4. COMPLETE GROUP CLASSIFICATION

We proceed to the classification with respect to four-dimensional solvable Lie

algebras, that is, we extend the realizations of the 3D Lie algebras obtained in

the previous section. After this classification the functional forms of the arbitrary

functions are in terms of the arbitrary constants only (c.f. Table 1). However, there

is a need to investigate whether or not the realizations of both the 3D and 4D Lie

algebras give the maximal symmetry Lie algebra.

Firstly we consider the decomposable 4D solvable Lie algebras. The extension

of the realizations is possible for the 4D Lie algebra 4A1 in the following cases:

4A1
1 = ⟨∂t, ∂x, ∂u, v∂v⟩: f1 = ℓ1, f 2 = ℓ2v

−1, f3 = ℓ3v, f 4 = ℓ4,

4A2
1 = ⟨∂t, ∂x, u∂u, ∂v⟩: f 1 = ℓ̄1, f2 = ℓ̄2u, f3 = ℓ̄3u

−1, f4 = ℓ̄4,

for the nonzero arbitrary constants, ℓ1, . . . , ℓ4 and ℓ̄1, . . . , ℓ̄4, are arbitrary.

Now in Table 2 we present the realizations of 4D nondecomposable solvable Lie

algebras which contain the 3D realizations and their corresponding forms of the

diffusion coefficients.

Table 2: 4D non decomposable solvable Lie algebras.

Algebra f 1 f2 f 3 f 4 Realization

A1
4,5 λ1v

2q−1 λ2v
p+2q−2 λ3v

2q−p λ4v
2q−1 ⟨∂t, ∂x, ∂u, t∂t + qx∂x + pu∂u + v∂v⟩

Ã1
4,5 λ1v

2p−1 λ2v
2p+q−2 λ3v

2p−q λ4v
2p−1 ⟨∂t, ∂u, ∂x, t∂t + px∂x + qu∂u + v∂v⟩

Â1
4,5 λ1v

2−q λ2v
p−q+1 λ3v

3−p−q λ4v
2−q ⟨∂x, ∂t, ∂u, qt∂t + x∂x + pu∂u + v∂v⟩

Ā1
4,5 λ1v

2−p λ2v
1−p+q λ3v

3−p−q λ4v
2−p ⟨∂x, ∂u, ∂t, pt∂t + x∂x + qu∂u + v∂v⟩

Ǎ1
4,5 λ1v

2p−q λ2v
2p−q λ3v

2p−q λ4v
2p−q ⟨∂u, ∂t, ∂x, qt∂t + px∂x + u∂u + v∂v⟩

À1
4,5 λ1v

2q−p λ2v
2q−p λ3v

2q−p λ4v
2q−p ⟨∂u, ∂x, ∂t, pt∂t + qx∂x + u∂u + v∂v⟩

The λi are arbitrary constants which are in general different.

5. FURTHER ANALYSIS

In order to investigate the maximal symmetry Lie algebra, we perform symmetry

analysis of all the cases in Tables 1 and 2 for which the arbitrary functions are

completely specified. The cases arising from the decomposable solvable Lie algebras

are also taken into account.

We show the detailed calculations of one case for both the classification with

respect to 3D and 4D Lie algebras and present the results only for the rest.
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Firstly we consider the 3D realization Ã2
3,7 = ⟨∂t, ∂u, t∂t + qu∂u + v∂v⟩ from Ta-

ble 1. We proceed by substituting the corresponding forms of the arbitrary func-

tions into the system (1) under consideration. Lie’s algorithm yields the symme-

try generator (9) the coordinates of which are of the form a = a(t), b = b(t, x),

c = e(t, x)u + f(t, x), d = d(t, x, v) for arbitrary functions e(t, x) and f(t, x). The

smooth differentiable functions, a, b, d, e and f , satisfy the determining equations

K1v (uex + fx) + vqK2 [vbxx − 2 ((q − 2)dx + vdxv)] = 0, (14)

K1 (uexx + fxx) +K2v
q−1dxx − v (uet + ft) = 0, (15)

v (ȧ− 2bx + dv)− 2d = 0, (16)

d− vȧ+ 2vbx = 0, (17)

(q − 2)d+ v (−e+ ȧ− 2bx + dv) = 0, (18)

v [(q − 2)ȧ− (q − 2)e+ 2(2− q)bx + 2(q − 2)dv + vdvv]

+
(
6− 5q + q2

)
d = 0, (19)

K1 (vbxx + dx − 2vex)− v2bt = 0, (20)

vbxx + qdx − 2vex = 0, (21)

v−(q+1) [K3v (uexx + fxx) +K4v
qdxx]− dt = 0, (22)

v (ȧ− 2bx + dv − vdvv)− 2d = 0, (23)

(1 + q)d− v (e+ ȧ− 2bx) = 0, (24)

v (e+ ȧ− 2bx − dv)− qd = 0, (25)

K3qv
1−q (uex + fx) +K4 (vbxx + 2dx − 2vdxv)− v2bt = 0. (26)

In the above equations and throughout the overdot represents total derivative with

respect to t and the subscripts denote partial differentiation. The solution of

Eqs. (14)–(26) is given by

a = C3t+ C4, b = C1x+ C2, c = q(C3 − 2C1)u+ C5, d = (C3 − 2C1)v, (27)

where C1, . . . , C5 are the arbitrary constants of integration.

Thus the symmetry Lie algebra for this case is spanned by the operators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = t∂t + qu∂u + v∂v, Γ5 = x∂x − 2qu∂u − 2v∂v.

The full symmetry Lie algebra for the rest of the cases that arise from symmetry

analysis are presented below.

Ã2
3,5: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = t∂t + u∂u + v∂v, Γ5 = x∂x − 2u∂u − 2v∂v.

Ã4
3,5: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = 2t∂t − u∂u − v∂v, Γ5 = x∂x + u∂u + v∂v.
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Ã2
3,6: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = t∂t − u∂u + v∂v, Γ5 = x∂x + 2u∂u − 2v∂v.

Ã4
3,6: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = 2t∂t + u∂u − v∂v, Γ5 = x∂x − u∂u + v∂v.

Ã2
3,7: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = t∂t + qu∂u + v∂v, Γ5 = x∂x − 2qu∂u − 2v∂v.

Ā2
3,7: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = qt∂t + u∂u + v∂v, Γ5 = qx∂x − 2u∂u − 2v∂v.

Ã4
3,7: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = 2t∂t − qu∂u − v∂v, Γ5 = x∂x + qu∂u + v∂v.

Ā4
3,7: Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = 2qt∂t − u∂u − v∂v, Γ5 = qx∂x + u∂u + v∂v.

For every case above the symmetry Lie algebra is spanned by the three operators

from the 3D realization and two additional operators that arise from symmetry

analysis.

Next we show the details of symmetry analysis for the case of 4D decomposable

Lie algebra 4A1 with the realization: 4A1
1 = ⟨∂t, ∂x, ∂u, v∂v⟩.

We proceed as in the previous symmetry analysis. Following the usual Lie’s

algorithm the coefficients of the symmetry generator (9) are of the form

a = a(t), b =
1

2
ȧx+ ē(t), c = f̄(t, x)u+ ḡ(t, x), d = d(t, x, v). (28)

The arbitrary smooth functions a, d, ē, f̄ and ḡ from (28) satisfy the determining

equations

vdxv − dx = 0, (29)

ℓ1v
(
uf̄xx + ḡxx

)
+ ℓ2dxx − v

(
uf̄t + ḡt

)
= 0, (30)

2d+ v
(
f̄ − 2dv + vdvv

)
= 0, (31)

d+ v
(
f̄ − dv

)
= 0, (32)

2ēt + xä+ 4ℓ1f̄x = 0, (33)

ℓ4dvv = 0, (34)

2vf̄x + dx = 0, (35)

ℓ3v
(
uf̄xx + ḡxx

)
+ ℓ4dxx − dt = 0, (36)

ℓ3f̄ = 0, (37)

2ēt + xä+ 2ℓ3
(
uf̄x + ḡx

)
+ 4ℓ4dxv = 0. (38)

Eventually the solution of the determining equations (29)–(38) is given by

a = 2C̄1t+ C̄2, b = C̄1x+ C̄3, c = C̄4, d = C̄5v, (39)

where C̄1, . . . , C̄5 are arbitrary constants of integration.

Therefore for this case the symmetry Lie algebra is spanned by the operators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂u, Γ4 = v∂v, Γ5 = 2t∂t + x∂x.



706 M. Molati and F.M. Mahomed

The symmetry Lie algebra for the other case of the 4D decomposable Lie algebra

4A2
1 is spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = u∂u, Γ4 = ∂v, Γ5 = 2t∂t + x∂x.

The maximal symmetry Lie algebras for every case in Table 2 of the four-dimensional

nondecomposable Lie algebras are summarized as follows:

A1
4,5 ∪ ⟨ (2q − 1)t∂t − pu∂u − v∂v, (2q − 1)x∂x + 2pu∂u + 2v∂v⟩.

Ã1
4,5 ∪ ⟨ (2p− 1)t∂t − qu∂u − v∂v, (2p− 1)x∂x + 2qu∂u + 2v∂v⟩.

Â1
4,5 ∪ ⟨ (q − 2)t∂t + pu∂u + v∂v, (q − 2)x∂x − 2pu∂u − 2v∂v⟩.

Ā1
4,5 ∪ ⟨ (p− 2)t∂t + qu∂u + v∂v, (p− 2)x∂x − 2qu∂u − 2v∂v⟩.

Ǎ1
4,5 ∪ ⟨ (2p− q)t∂t − u∂u − v∂v, (2p− q)x∂x + 2u∂u + 2v∂v⟩.

À1
4,5 ∪ ⟨ (p− 2q)t∂t + u∂u + v∂v, (p− 2q)x∂x − 2u∂u − 2v∂v⟩.

In all the above cases the symmetry Lie algebra is six-dimensional, four operators

from the classification with respect to 4D Lie algebras and the additional two oper-

ators obtained via symmetry analysis. Moreover it can be seen that, if p = q, then

a pair of similar cases is reduced to one case.

6. CONCLUDING REMARKS

We have managed to specify completely the functional forms of the diffusion

coefficients through the classification with respect to the solvable Lie algebras of

dimension up to four. In order to determine the maximal symmetry Lie algebra, we

performed the symmetry analysis of individual cases for the realizations of the 3D

and 4D Lie algebras in which the functional forms of the unknown functions are in

terms of the arbitrary constants. In short the full classification has been achieved.

The comparison with the previous studies of the model considered in [9, 11] can

hardly be established. It should be noted that group classification using the other

types of Lie algebras has not been considered in this work. These are semisimple

Lie algebras and the algebras which are semidirect sum of semisimple algebras and

solvable Lie algebras (c.f. Appendix [3]). The next step will be to find both the

analytical and numerical solutions of the submodels.
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