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Abstract- The well-posedness of a Riemann problem at a junction in a pipeline

network is discussed. In addition computational results on the dynamics of the flow

of a multi-component gas at such network junctions are presented. The work pre-

sented here is a generalisation of [M. K. Banda, M. Herty, and J. M. T. Ngnotchouye,

Towards a mathematical analysis of multiphase drift-flux model in networks, SIAM

J. Sci. Comput., 31(6): 4633 – 4653, 2010] to models in which the equation of state

has different compressibility factors or sonic speeds.
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1. INTRODUCTION

We consider pipe networks through which multi-component fluids flow. The

pipes in the network intersect at joints or junctions. The idea is to propose coupling

conditions for the case in which the individual fluid components have unequal sonic

speeds or compressibility factors. The analysis presented in this paper is an exten-

sion of the work in [4]. In [4] multi-component flow in which sonic speeds of fluid

components are equal were considered.

An isothermal no-slip drift-flux model for multi-component flows is considered. In

this model the closure law, the so called slip condition, has a vanishing slip func-

tion. The drift-flux model obtained is presented in Section 2. The same section also

discusses a mathematical analysis of the model. These kinds of models have many

applications in the chemical, petroleum and nuclear industries.

The mathematical analysis of networked flow has recently become an active area of

research. Some examples include [2, 3, 4, 8, 10]. The well-posedness of the coupling

of flow at junctions will be presented in Section 3. In Section 4 results of numerical

tests of such coupling conditions will be presented.
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2. MODEL FORMULATION AND THE RIEMANN PROBLEM

The conservative isothermal no-slip drift-flux model takes the form

∂tρ1 +∂x
ρ1I

ρ̂
= 0;

∂tρ2 +∂x
ρ2I

ρ̂
= 0; (1)

∂tI +∂x

(
I2

ρ̂
+ p(ρ1, ρ2)

)
= 0;

where we denote I = ρ̂u, ρ̂ = ρ1 + ρ2. In the above, components of an immiscible

mixture of two fluids are denoted by the subscripts i ∈ {1, 2}. Hence the density,

volume fraction, velocity and pressure are denoted by ϱi, αi, ui, pi, respectively,

see also [4] and references therein. The density of each component is denoted as

ρ1 = α1ϱ1 and ρ2 = α2ϱ2. It is also assumed that u = u1 = u2. Since each component

is isothermal, the equation of state is of the form p
.
= pi(ρi) = a2i ρi, i ∈ {1, 2}, where

the positive constants ai are the compressibility factors or sonic speeds of phase i.

From the relation α1 + α2 = 1, we obtain an equation of state:

p(ρ1, ρ2) = a21ρ1 + a22ρ2. (2)

In the pipe network, at each junction where pipes intersect, we need to solve a

Riemann problem [9, 11]. This consists of solving the model (1) in each pipe with

constant data in addition to some coupling conditions at the intesection.

We note that the eigenvalues λ1,2,3 and the eigenvectors r1,2,3 of the drift-flux model

(1) are given by

λ1,3(w) =
I

ρ̂
∓

√
ρ1a21 + ρ2a22

ρ̂
=

I

ρ̂
∓
√

p

ρ̂
, λ2(w) =

I

ρ̂
;

r1,3(w) =

 ρ1

ρ2

ρ̂λ1,3(w)

 , r2(w) =

 a22
−a21

(a22 − a21)λ2(w)

 ,

The field 2 is always linearly degenerate while the fields 1 and 3 are genuinely non-

linear [9, 11]. Moreover since p ≥ 0, ∀ρ1, ρ2 > 0 model (1) is hyperbolic and strictly

hyperbolic if
√
p ̸= I√

ρ̂
.

We now discuss the Lax-curves as a pre-requisite to presenting the solution of the

standard Riemann problem.
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2.1. Shock Curves

The Lax shock curves are derived from the Rankine-Hugoniot jump conditions

(3). Let w be a given state and assume that another state w̄ is connected to w by

a 1-, 3-shock wave of shock speed s. Then w and w̄ satisfy

f(w)− f(w̄) = s(w − w̄). (3)

For the equation of state given in (2), the shock curves are given by

S1,3(ξ;w) =

 ρ1ξ

ρ2ξ

Iξ ∓ (ξ − 1)
√
ξ
√
ρ̂p

 (4a)

with shock speed

s1,3(ξ;w) =
I

ρ̂
∓

√
ξ

√
p

ρ̂
. (4b)

The forward (respectively, backward) admissible 1-shock curves are obtained using

the Lax admissibility conditions [9] denoted as S1(ξ;w) given by (4) with ξ ≥ 1,

(respectively, ξ ≤ 1). Similarly, the forward (respectively, backward) 3-shock curves

are given by S3(ξ;w) in (4) with ξ ≤ 1, (respectively ξ ≥ 1).

2.2. Contact Discontinuity

Let w and w̄ be two given states. Using the linear degeneracy of the 2-field and

the Rankine-Hugoniot jump condition (3), we declare that w belongs to the 2-curve

emanating from w̄ if w − w̄ = ξr2(w̄), ξ ∈ R. Eliminating ξ from this system

and applying suitable scaling, one obtains the contact discontinuity wave emanating

from any state w given by the curve

L2(ξ;w) =
1

a22

 a22ρ1ξ

a22ρ2 + a21(1− ξ)ρ1
I
ρ̂
(a21ρ1 + a22ρ2 + (a22 − a21)ρ1ξ)

 .

Note that we have continuity of the pressure along the contact discontinuity.

2.3. Rarefaction Curves

We first note that rarefaction waves are given as integral curves of the eigenvec-

tors of the flux function

dw

dξ
=

r1,3(w(ξ))

∇λ∓(w(ξ)) · r1,3(w(ξ))
, ξ ≥ ξ1,3,
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with ξ1,3 = λ1,3(w). This yields

R1,3(ξ;w) =

 ρ1ξ

ρ2ξ

Iξ ∓ ξ log(ξ)
√

ρ̂(a21ρ1 + a22ρ2)

 . (5)

The forward (respectively, backward) admissible 1-rarefaction curves for (5) are

obtained using the Lax admissibility condition as R1(ξ;w) with ξ < 1, (respectively,

ξ > 1). Similarly, the forward (respectively, backward) 3-rarefaction curves are given

by R3(ξ;w) with ξ > 1, (respectively, ξ < 1).

In summary the Lax-curves for model (1) with the equation of state (2) are given

by

L+
1 (ξ;w) =

{
S1(ξ;w), ξ ≥ 1;

R1(ξ;w), ξ < 1;
L+

3 (ξ;w) =

{
S3(ξ;w), ξ ≤ 1;

R3(ξ;w), ξ > 1;

L−
1 (ξ;w) =

{
S1(ξ;w), ξ ≤ 1;

R1(ξ;w), ξ > 1;
L−
3 (ξ;w) =

{
S3(ξ;w), ξ ≥ 1;

R3(ξ;w), ξ < 1.

The shock speeds are given by s1,3(ξ, w) =
I

ρ̂
∓

√
ξ

√
p

ρ̂
.

2.4. Solution to the Standard Riemann Problem for (2)

Proposition 0.1 [9] We consider the Riemann problem for (1) with initial data

w(x, 0) =

{
w− if x < 0;

w+ if x > 0.

For |w+ − w−| sufficiently small, there exists a unique weak self-similar solution

to this Riemann problem with small total variation. This solution comprises four

constant states w0 = w−, w1, w2, w3 = w+. When the i-th characteristic family is

genuinely nonlinear wi is joined to wi−1 by either an i-rarefaction wave or an i-

shock, while when the i-characteristic family is linearly degenerate, wi is joined to

wi−1 by an i-contact discontinuity.

Assuming the states w− and w+ are given and satisfy the conditions of Proposi-

tion 0.1, then the intermediary states, w1 and w2, could be:

w1 = L+
1 (ξ1;w

−), w2 = L2(ξ2;w1), and w2 = L−
3 (ξ3;w

+).

Denoting the momentum components of w1 and w2 as I1(ξ1;w
−) and I3(ξ3;w

+),

respectively. The solution for the Riemann problem is found if we can solve for
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ξ1, ξ2 and ξ3 the system

ρ +
1 ξ3 = ρ−1 ξ1ξ2,

ρ +
2 ξ3 = ρ−2 ξ1 +

a22
a21

(1− ξ2)ρ
−
1 ξ1,

I 3(ξ3;w
+) =

I1(ξ1;w
−)

a22(ρ
−
1 + ρ−2 )ξ1

(
(a21ρ

−
1 + a22ρ

−
2 )ξ1 + (a22 − a21)ρ

−
1 ξ1ξ2

)
.

Proposition 0.2 Assume that we have a multi-component fluid described with the

equation of state (2) with a21 and a22 given. Let w be a state that satisfies the following

condition
ρ1 I

ρ̂

a21 − a22
a22

+ 2
√

ρ̂p ̸= 0. Then, for w− and w+ close to w, the standard

Riemann problem with data (w−, w+) admits a solution.

3. PIPE-TO-PIPE INTERSECTIONS

We assume two pipes are joined at a junction located at x = 0. The flow in the

pipes is defined by (1) and at the junction the flow must also satisfy the coupling

conditions:

Ψ
(
w−(t, 0−);w+(t, 0+)

)
= 0.

The variables w− and w+ denote the flow variables in the left and right pipes,

respectively. The notations R+ =]0,+∞[ and
◦
R

+

= [0,+∞[ will also be used.

We consider solutions of the Riemann problem at the junction as perturbations of

stationary solutions of (1). Consider the subsonic region defined as

A0 = {w ∈
◦
R

+

×
◦
R

+

× R : λ1(w) < 0 < λ2(w) < λ3(w)}.

Further define flow of the density of phase 1 as M(w) = ρ1I/ρ̂, flow of the density of

phase 2 as N(w) = ρ2I/ρ̂, flow of the linear momentum as P (w) = I2/ρ̂+ p(ρ1, ρ2).

In general, we are interested in Ψ-solutions, that is, weak solutions depending on

the coupling conditions map Ψ. We consider a map ŵ defined as

ŵ(x) =

{
ŵ− if x < 0

ŵ+ if x > 0
with

Ψ(ŵ−; ŵ+) = 0,

ŵ−, ŵ+ ∈ A0.

The existence of ŵ+ for a given ŵ− is guaranteed by Lemma 0.1. In a neighborhood

of a junction between two pipes, one can integrate the stationary model from (1) to

obtain the coupling conditions map [5, 6, 10]

Ψ
(
w−;w+

)
=

M(w+)−M(w−)

N(w+)−N(w−)

P (w+)− P (w−)

 . (7)
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Note that the conservation of mass of each phase and the equality of the dynamic

pressure at the junction are preserved. We can prove that when a stationary flow

w− is prescribed in the ingoing pipe, we can solve for the flow in the outgoing pipe

in general which is also stationary.

Lemma 0.1 Let w̄ ∈ A0. Then there exists δ̄ > 0 and a Lipschitz map T : B(w̄; δ̄) →
A0 where B(w̄; δ̄) is a ball centred at w̄ with radius δ̄, such that Ψ(w−;w+) =

0; w−, w+ ∈ B(w̄; δ̄) iff w+ = T (w−).

This result is similar to a result presented in [7] in the context of the p-system. More-

over, Lemma 0.1 ensures the “additivity” property [5, 9] for the Riemann problem

at a junction. For the well-posedness of the Riemann problem at a junction with

more than two pipes, we present the following:

Proposition 0.3 Let ŵ1, ŵ2 ∈ A0 be the data in the ingoing and outgoing pipe

connected at x = 0. Assume that the following condition is satisfied

1

a21
λ1(ŵ1)λ2(ŵ2)λ3(ŵ2)

(
λ2(ŵ2)ρ

2
1(a

2
2 − a21)− λ3(ŵ2)p(ρ̂

2
1, ρ̂

2
2)
)
(ρ̂11ρ̂

2
2−ρ̂12ρ̂

2
1) ̸= 0 (8)

Then, there exists a constant δ > 0 and for any states w̄1 and w̄2 such that |w̄i−ŵi| <
δ, for i = 1, 2, the Riemann problem at the junction with data (w̄1, w̄2) has a unique

solution.

The argument in the proof is standard and has also been developed in [2, 3, 6, 8, 10]

for other models.

4. NUMERICAL EXPERIMENTS

The numerical schemes used to test the homogeneous no-slip drift-flux multi-

phase flow model as defined in (1) are the second-order relaxed schemes which were

discussed in [1] and references therein. For a comparison with other schemes applied

to similar problems refer to [4]. Initial conditions are some perturbation of station-

ary solutions, see Proposition 0.3. Newton’s method is used to solve the system

in equation (7) combined with the Lax curves which gives the boundary conditions

at the junctions of the network. For the external (inlet to network or outlet from

network) boundary conditions, the transparent boundary conditions are imposed.

4.1. Effect of the compressibility of the different phases on the flow

Here we consider model equation (1) with the following data, refer to [4] and refer-

ences therein, in the primitive variables v = (ρ1, ρ2, u) : v
−(x, 0) = (500/9, 0.95/18, 10);
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Figure 1: Profiles of the densities, the common velocity and the pressure for the

Riemann problem for the drift flux model with different compressibility factors.

v+(x, 0) = (500/10, 1/20, 10). In Figure 1 the plots of the densities, the velocity and

the pressure at time t = 0.8 are shown. We also present results for the case
a22
a21

= 1,

see also [4].

4.2. A junction connecting two pipes

Here we will firstly verify the qualitative behavior of the coupling conditions.

Secondly, we will use it to present the effect of the variation of the sound speed of

each phase at the junction. The compressibility factors are taken as a21 = 16.0

and a22 = 1.0 with the Riemann data w− = (3.17123, 3.38324, 3.71816), w+ =

(2.70708, 4.0434, 3.5629). The mesh size of N = 400 was employed on a single

pipe on which the standard Riemann solver was applied and N = 200 was applied

on each coupled pipe. In Figure 2 computational results at t = 0.05 are shown.

Qualitatively, there is very good agreement between the two. The results in Figure 3

show the effects of the sonic speeds. Three cases were considered: a21 = a22 = 6.0,

16 = a21 > a22 = 1 and 1 = a21 < a22 = 16.0. We observe that higher values of the



M.K. Banda, M. Herty and J-M. T. Ngnotchouye 581

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

x

ρ 1

 

 

Initial
Std. RP
Coupled

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

x

ρ 2

 

 

Initial
Std. RP
Coupled

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

x

M
om

en
tu

m
 (

I)

 

 

Initial
Std. RP
Coupled

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
47

48

49

50

51

52

53

54

55

x

P
re

ss
ur

e 
(p

)

 

 

Initial
Std. RP
Coupled

Figure 2: Profiles of densities, momentum, and the common pressure p for the

standard Riemann problem (continuous line) and two coupled pipes (dashed line).

pressure are obtained with smaller values of a21.

4.3. A Junction with three connected pipes.

We apply coupling conditions proposed in (8). We consider the case of one ingo-

ing and two outgoing pipes, case A, and two ingoing and one outgoing pipes, case B.

For case A the initial data in each pipe is w1 = (6.4500000, 12.8050000, 31.9713732);

w2 = (10.3300000, 3.3578000, 2.4903271); w3 = (1.9534000, 4.5682760, 29.4810461);

and for case B: w1 = (5.5000000, 6.6050000, 17.2150344);

w2 = (7.11300000, 4.8110000,−2.3628774); w3 = (5.9534000, 7.8359377, 14.8521570).

The results in Figure 4, show the snapshots of the densities for case A with 0 ≤ t ≤
0.1.
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Figure 3: Profiles of densities, common velocity and pressure for coupled models

with different compressibility factors at time t = 0.06.

In Figure 5 we present the snapshot of momentum for the case of two ingoing

and one outgoing pipes.
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Figure 4: Snapshots of the densities for the solution of the Riemann problem at the

junction with one ingoing and two outgoing pipes.

−1
−0.8

−0.6
−0.4

−0.2
0 0

0.05

0.115

16

17

18

19

20

21

t
x

m
1

0
0.2

0.4
0.6

0.8
1 0

0.05

0.1−5

0

5

10

15

t
x

m
2

0
0.2

0.4
0.6

0.8
1 0

0.05

0.14

6

8

10

12

14

16

t
x

m
3

Figure 5: Snapshots of the momentum for the solution of the Riemann problem at

the junction with two ingoing and one outgoing pipes.

5. CONCLUSION

We have solved the standard Riemann problem for the multi-phase model (1)

with the pressure law (2). For the case of two connected pipes at a junction, the

Riemann problem at the junction have been proved to have a unique solution under

some conditions. In general we have proven that when the inflow is given and

the coupling conditions are defined in a suitable way, one can always solve for the

outflow in the outgoing pipe. We have also presented some numerical results that

demonstrate the applicability of our model and its possible extension to more general

networks.
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