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Abstract- The magnetohydrodynamic (MHD) flow of an electrically conducting second 
order/grade fluid past a porous disk is studied when the disk and the fluid at infinity 
rotate with the same angular velocity about non-coincident axes. It is found that the 
existence of solutions is in connection with the sign of the material modulus 1α  for both 

suction and blowing cases. The effects of all the parameters on the flow are carefully 
examined.  
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1. INTRODUCTION 

 

 The flow induced by non-coaxial rotation of a disk and a fluid at infinity has 
attracted the interest of many investigators. Following Coirier [1], Erdoğan [2] 
examined the flow produced by the rotation non-coaxially of a porous disk and a 
Newtonian fluid at infinity with the same angular velocity. Murthy and Ram [3] 
extended the flow in [2] to the magnetohydrodynamic flow and studied the effect of 
heat transfer. Ersoy [4] analysed the flow of an Oldroyd-B fluid for a porous disk in the 
presence of a uniform magnetic field. The case of the flow of a second order/grade fluid 
past a porous disk was studied by Ersoy and Barış [5]. Hayat et al. [6] examined the 
flow of a second grade fluid past a porous disk under the influence of an applied 
magnetic field, depending on the restrictions 01 ≥α  and 021 =+αα , and solved the 

problem using a perturbation method. They also studied the MHD flow between two 
porous disks rotating about a common axis. Chakraborti et al. [7] reconsidered the flow 
in [3] and analysed the flow in detail. Apart from steady flows, for unsteady flows in the 
same geometry, we refer the reader to [8-18] for a Newtonian fluid and to [19-27] for 
various non-Newtonian fluids. In addition, the reader may consult [28-32] for the 
studies that deal with the flow of non-Newtonian fluids between two disks rotating 
about non-coincident axes in the presence of a magnetic field.  
 In this paper, we are concerned with the flow of an incompressible and 
electrically conducting second order/grade fluid caused by the non-coaxial rotation of a 
porous disk and the fluid at infinity with the common angular velocity under the 
application of a uniform magnetic field. It should be pointed out clearly that our main 
purpose is to examine the problem depending on the sign of the material modulus 1α . 

The flow is characterized by non-dimensional parameters β  (the elastic parameter), e 
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(the suction-blowing parameter) and N (the magnetic parameter). All results we have 
found are drawn in the figures. 
 

2. BASIC EQUATIONS AND SOLUTION 

 

 In a Cartesian coordinate system, let us consider a porous disk in the xy-plane 
rotating counterclockwise at a constant rate of Ω  about the z- axis perpendicular to the 
disk. A second order/grade fluid is present in the upper half-space z≥0. The axis of 
rotation of the fluid at infinity which rotates at equal angular velocity with the disk is 
parallel to Oz axis and passes through the point O′  (x=0, y= l ). A uniform magnetic 
induction 0B  acts normal to the insulated disk, i. e. along z-direction. We assume that 

the induced magnetic field is negligible in comparison with the applied magnetic field.
 The Cauchy stress T in an incompressible and homogeneous second order/grade 
fluid is given by Rivlin and Ericksen [33] 
 

2
12211 AAAIT ααµ +++−= p     (1) 

 
where p is the pressure, µ  the dynamic viscosity of the fluid, 1α  and 2α  the material 

moduli which are usually referred to as the normal stress coefficients. In the above 
representation, I is the identity tensor, and the kinematical tensors 1A  and 2A  are 

defined through 
 

 T) grad() grad(1 vv +=A ,  11
1
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where v is the velocity vector and DtD /  the material time derivative. We notice that if 

021 ==αα  the model Eq.(1) reduces to the classical linearly viscous fluid model. 

 The thermodynamical principles impose some restrictions on 1α  and 2α  [34]. In 

particular, the Clasius-Duhem inequality implies that 
 

 0≥µ ,  021 =+αα     (3a) 

 
and the requirement that the specific Helmholtz free energy be a minimum in 
equilibrium implies that  
 

 01 ≥α        (3b) 

 
 The fluids characterized by above restrictions are called the second grade fluids 
in the literature. On the other hand, the model Eq.(1) is called a second order fluid 
model ( 01 <α  and 021 ≠+αα ), which is in good agreement with experimental results, 

if it is not required to be compatible with thermodynamics [35]. Therefore, it is clear 
that the results established for the case 01 >α  have more value than the solution 

01 <α . In this study, we consider both positive and negative values of 1α . Moreover, 
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another result that emerges from this analysis is that there is no effect of the material 
modulus 2α  on the velocity field.  

 The governing equations are 
 

 BJ
v

×+⋅∇= T
Dt

D
ρ ,  0=⋅∇ v ,     

 0=⋅∇ B ,          JB mµ=×∇ ,          0=×∇ E ,          ( )BvEJ ×+=σ    (4a-f)  

 
where ρ  is the density, J the current density, B the magnetic induction, mµ  the 

magnetic permeability, E the electric field, and σ  is the electrical conductivity of the 
fluid. 
 The boundary conditions for the velocity field are taken to be 
  
  yu Ω−= ,        xv Ω= ,      constant=w  at  0=z      

  ( )l−Ω−= yu  ,      xv Ω= ,      constant=w  at  ∞→z         (5) 

 
where u, v, w denote the x, y, z components of the velocity, respectively. 
 We seek a solution, compatible with the continuity equation (4b), such as to 
have the following form: 
 

 )(zfyu +Ω−= , )(zgxv +Ω= , constant=w   (6) 

 
 The appropriate boundary conditions for )(zf  and )(zg  from Eqs.(5) and (6) 

are 
 

 0)0( =f ,      0)0( =g ,      lΩ=∞)(f ,      0)( =∞g   (7) 

 
 From Eqs.(1), (2), (4a) and (6), one has 
 

  ( ) ( ) 01 BJfwgffwgx
x

p
y+′′′+′′Ω+′′+′−+ΩΩ=

∂

∂
αµρρ        (8a) 

  ( ) ( ) 01 BJgwfggwfy
y

p
x−′′′+′′Ω−+′′+′−+Ω−Ω−=

∂

∂
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  ( )( )ggff
z

p
′′′+′′′+=

∂

∂
2122 αα           (8c) 

 
where a prime denotes differentiation with respect to z. Using Eq.(4f), we obtain 
 

 ( )0vBEJ xx += σ , ( )0uBEJ yy −= σ , zz EJ σ=   (9) 

 
Bearing in mind that the disk is non-conducting, when we use the current conservation 
equation 0=⋅∇ J  which is a consequence of Eq.(4d) with Eqs.(4e), (8a-c) and (9), we 
have 
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( ) ( ) constant2
01 =−′′′+′′Ω+′′+′−Ω fBfwgffwg σαµρ      (10a) 

  ( ) ( ) constant2
01 =−′′′−′′Ω−′′+′+Ω− gBgwfggwf σαµρ      (10b) 

 
Defining igfzF +=)( , Eqs. (10a-b) reduce to the following equation 

  

constant)()( 2
011 =Ω+−′−′′Ω−+′′′ FiBFwFiFw ρσραµα   (11) 

 
with the conditions 
 

0)0( =F , lΩ=∞)(F     (12) 

 
Furthermore, all derivatives of )(zF  go to zero as ∞→z  because the fluid at infinity is 

free of shear stress. Thus, we find that the constant in (11) is equal to )( 2
0 Ω+Ω− ρσ iBl . 

 Let us make the variables non-dimensional by the following substitutions: 
 

 
lΩ

=Γ
F

,    z
ν

ζ
2

Ω
= ,    

µ

α
β

Ω
= 1 ,    

νΩ
=

2

w
e ,    

Ω
=
ρ

σ 2
0BN   (13) 

 
Here ν  denotes the kinematic viscosity of the fluid, β  the elastic parameter, e the 

suction-blowing parameter, and N is the magnetic parameter. As seen from 

)2/( νΩ= we , the case of suction corresponds to e<0 and the case of blowing to e>0. 

The non-dimensional equation becomes 
 

 )(2)(222)1(2 iNiNeie +−=Γ+−Γ′−Γ ′′−+Γ ′′′ ββ   (14) 

 
with the conditions as follows 
 

 0)0( =Γ , 1)( =∞Γ , 0...)()()( ==∞Γ ′′′=∞Γ ′′=∞Γ′   (15) 

 
 It is noticed that Eq.(14) is one order higher than the Navier-Stokes equations 
due to the viscoelasticity of the fluid. It would thus appear that the additional boundary 
condition must be imposed to determine the solution completely. The issue of 
difficulties with regard to prescribing boundary conditions is discussed in detail by 
Rajagopal [36]. Since the flow under consideration takes place in unbounded domain, 
we are able to overcome this difficulty by using asymptotic conditions and boundedness 
of solutions, as in the study of Rajagopal and Gupta [37]. They examined the existence 
of solutions that is tied in with the sign of material modulus 1α  for the flow of a second 

order/grade fluid past an infinite porous plate subjected to either suction or blowing at 
the plate. They found that if the material modulus 01 >α  it is possible to exhibit an 

exact solution which is asymptotic in nature for both suction and blowing at the plate. 
However, in the case of 01 <α , they found that such solutions cannot exist for the 

blowing case.  
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Figure 1- Profiles of lΩ/f  and lΩ/g  for various values of β , e and N. 
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Figure 2- Space curves consisting of the points about which the fluid layers rotate as a rigid body  

with a constant angular velocity Ω .  
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 The characteristic equation of Eq.(14) is in the form of a cubic equation and has 
three roots. In order to obtain physically acceptable solutions to Eq.(14) under the 
conditions (15) this characteristic equation must have only one complex root with 
negative real part. Otherwise, the conditions Eq.(15) will not suffice to get physically 
acceptable solutions. It is for this reason that there exist above mentioned solutions for 

01 >α  in the case of suction, on the other hand, for 01 <α  in the case of blowing. The 

variations of lΩ/f  and lΩ/g  for various values of parameters are plotted against ζ  

in Figure 1. 
 

3. DISCUSSION 

 

 When a porous disk and a fluid at infinity rotate eccentrically with the same 
angular velocity Ω , there exists a single point in each plane z=constant where the 
velocity vector has only the axial component and about which the fluid layer rotates as a 
rigid body with the angular velocity Ω . The coordinates of this point are given by 

Ω−= /)(zgx  and Ω= /)(zfy  for ∞<≤ z0 . Figure 2 shows these space curves for 

various values of the parameters β , e and N. The graphs lΩ/f  and lΩ− /g  plotted 

versus ζ  in Figure 1 are the projections of the above mentioned space curves on the yz-

plane and the xz-plane, respectively.  
 The following conclusions can be extracted from our analysis: 

1. The positive sign of the material modulus 1α  brings out physically acceptable 

solutions for the suction case, whereas its negative sign is meaningful for the 
blowing case. 

2. It is a well-known fact that suction and blowing have opposite characteristics on 
the boundary layer flows. It is clearly shown that the suction causes a thinning of 
the boundary layer, whereas the blowing leads to a reverse effect. 

3. The presence of externally applied magnetic field brings about a thin boundary 
layer near the disk. 

4. The effect of magnetic field on any flow is an important problem related to 
many practical applications as in the case of boundary layer flow control. Since 
the blowing causes an increment in the boundary layer thickness, it is shown that 
the boundary layer can be controlled by applying a magnetic field. 

5. Increasing the fluid elasticity causes thickening of the boundary layer for the 
suction case, whereas the reverse is true for the blowing case. 

6. There is no effect of the material modulus 2α  on the velocity field since both the 

disk and the fluid at infinity rotate with the same speed. 
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