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Abstract- The present study introduces a novel and simple matrix method for the 

solution of longitudinal vibration of rods in terms of Taylor polynomials. The proposed 

method converts the governing partial differential equation of the system into a matrix 

equation, which corresponds to a system of linear algebraic equations with unknown 

Taylor coefficients. Then the solution is obtained easily by solving these matrix 

equations. Both free and forced vibrations of the system are studied; particular and 

general solutions are determined. The method is demonstrated by an illustrative 

example using symbolic computation. Comparison of the numerical solution obtained in 

this study with the exact solution is quite good. 
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1. INTRODUCTION 

 

 Longitudinal vibration of a bar or rod is one of the fundamental problems in 

mechanical vibrations since the transition from this classical problem to the more 

contemporary problems is logical and direct. The governing equation of motion of this 

problem, which is also known as the wave equation, is a partial differential equation of 

second order in both space and time. The solution of this equation by separation of 

variables can be found in textbooks [1,2,3]. 

In the present study, a novel and simple matrix method in terms of Taylor 

polynomials is introduced for the solution of this partial differential equation. This 

method is based on first taking the truncated Taylor series of the function in the 

equation and then substituting the matrix forms into the given equation. The result 

matrix equation can be solved and the unknown Taylor coefficients can be found 

approximately. Taylor polynomials have been used by many researchers for the solution 

of differential and integral equations. Everitt et al. [4] gave orthogonal polynomial 

solutions of linear ordinary differential equations. Gülsu and Sezer [5] and Sezer and 

Daşçıoğlu [6] gave Taylor polynomial approximations for the solution of m
th

-order and 

higher order linear differential-difference equations with variable coefficients under the 

mixed conditions about any point. Taylor matrix method has been used to solve the 

Riccati differential equation by Gülsu and Sezer [7] and to solve the generalized 

pantograph equations with linear functional argument by Sezer and Daşçıoğlu [8]. In 

both of the studies, the methodology is compared with some other known techniques to 

show that the present approach is relatively easy and highly accurate. Li [9] proposed a 

simple yet efficient method to approximately solve linear ordinary differential equations 
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making use of Taylor’s expansion and gave illustrative examples to demonstrate the 

efficiency and high accuracy of the proposed method. Kurt and Çevik [10] applied the 

Taylor polynomial matrix method to the free vibration of a single degree of freedom 

system and determined particular and general solutions of the differential equation. On 

the other hand, Sezer and Yalçınbaş [11] used this method to solve higher order linear 

complex differential equations in rectangular domains. In all these studies, ordinary 

differential and integral equations with only one independent variable are considered.  

The present study is an application of the Taylor polynomial matrix method to 

the partial differential equation of an engineering vibration problem.  

The governing differential equation of the longitudinal vibration of a uniform 

bar is [1] 

′′ − =&&EAu ( x,t ) Au( x,t ) f ( x,t )ρ             (1) 

where primes and dots denote differentiation with respect to position x  and and time t , 

respectively; E  is the Young's modulus, A  is the cross-sectional area and ρ  is the mass 

density of the bar; u( x,t )  is the axial displacement and f ( x,t )  is the forcing function. 

In the present method, the solution of (1) is expressed in the form 

( ) ( )
= =

= − −∑∑
N N

p q

p,q 0 0

p 0 q 0

u( x,t ) c x x t t   ( )( p ,q )
p,q 0 0

1
c u x ,t

p!q!
=        (2) 

which is a Taylor polynomial of degree N  at ( ) ( )= 0 0x,t x ,t  and is obtained by 

determining the unknown Taylor coefficients p,qc , p,q 0,1,...,N= . 

 

2. MATRIX REPRESENTATION OF THE PROBLEM 

 

2.1. Fundamental equation 

The assumed solution u( x,t )  defined by the truncated Taylor series (2) can be 

put into the matrix form 

[ ] =u( x,t ) XCT               (3) 

where 
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in which p,qc  are the unknown Taylor coefficients. 

 

The nth derivative of  u( x,t )  with respect to position x  is  
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( ) ( )
= =

= − −∑∑
N N

p q( n,0 ) ( n,0 )
p,q 0 0

p 0 q 0

u ( x,t ) c x x t t             (4) 

It should be noted for Eq. (4) that ( 0,0 )
p,q p,qc c=  and ( 0,0 )u ( x,t ) u( x,t )= . The recurrence 

relation between the Taylor coefficients of respective derivatives can be written as [5] 

( ) ( n,0 )( n 1,0 )
p,q p 1,qc p 1 c+

+= +               (5) 

Using (5), the relation between the xderivatives of the matrix C  can be expressed as 

( n 1,0 ) ( n,0 )+ =C DC               (6) 

where 
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According to (6), it follows that 

( 2,0 ) ( 1,0 ) ( 0,0 )= = =2 2
C DC D C D C             (7) 

Consequently, one may write 

[ ]′′ =u ( x,t ) 2
XD CT               (8) 

In a similar way, the nth derivative of  ( )u x,t  with respect to time t  is  

( ) ( )
= =

= − −∑∑
N N

p q( 0,n ) ( 0,n )
p,q 0 0

p 0 q 0

u ( x,t ) c x x t t             (9) 

The recurrence relation between the Taylor coefficients of respective derivatives can be 

written as [5] 

( ) ( 0,n )( 0,n 1 )
p,q p,q 1c q 1 c+

+= +             (10) 

Using (10), the relation between the time derivatives of the matrixCcan be expressed as 

( 0,n 1 ) ( 0,n )+   =   
T T

C D C            (11) 

According to (11), it follows that 

( 0,2 ) ( 0,1 ) 2 ( 0,0 )     = = =     
T T T

2 T
C D C D C D C         (12) 

As a result, one may write 

[ ] ( )=u( x,t )&&
T

2
XC D T             (13) 
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The forcing function in Eq. (1) is generally given as f ( x,t ) F( x )cos tω=  where 

F  and ω  are the amplitude and frequency, respectively. f ( x,t )  can be written as the 

truncated Taylor series expansion of degree N  at ( ) ( )= 0 0x,t x ,t  in the form 

( ) ( )
= =

= − −∑∑
N N

p q

p,q 0 0

p 0 q 0

f ( x,t ) g x x t t           (14) 

The matrix form of (14) is 

[ ] =f ( x,t ) XGT             (15) 

where 
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K
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such that ( )( p,q )
p,q 0 0

1
g f x ,t

p!q!
=  are known Taylor coefficients. 

The fundamental matrix equation is constructed by substituting the matrix 

relations (8), (13) and (15) into (1), and simplifying to yield  

EA Aρ− =2 2 T
D C C(D ) G            (16) 

 

2.2. Boundary conditions and initial values 

The most common boundary conditions for a rod in longitudinal vibration are 

clamped and free ends; that is, 

At

At

= =

′= =

x 0 , u(0,t ) 0

x L , u ( L,t ) 0
           (17) 

Substituting Eq. (3) into Eq. (17) gives the matrix equations for the boundary conditions 

[ ] [ ]
[ ] [ ]

= ⇒ =

= ⇒ =

L L

L L

( 0 ) ( t ) 0 0 0 ( t ) ( 0 ) 0 0 0

( L ) ( t ) 0 0 0 ( t ) ( L ) 0 0 0

X CT T X C

X DCT T X DC
      (18) 

Note that the left and right hand sides of the equations in (18) are 1 ( N 1)× +  matrices. 

Equating corresponding entries of these matrices yields 2( N 1)+  equations; writing 

these equations one by one constitutes a 2( N 1)+ -rows matrix of boundary conditions. 

On the other hand, the initial values at the free end are 

0

0

u( x,0 ) u

u( x,0 ) v

=

=&
             (19) 

Substituting Eq. (3) into Eq. (19) gives the matrix equations for the initial values 

0

0

0

0

( x ) ( ) u

( x ) ( ) v

=

=T

X CT

X CD T
            (20) 
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Therefore, these two initial values yield two equations which constitute a 2 -

rows matrix of initial values. 

 

3. SOLUTION OF THE PROBLEM 

 

The left and right hand sides of the fundamental equation (16) are 

+ × +( N 1) ( N 1) -sized matrices. In order to calculate the unknown p,qc  values in the 

left hand side of (16), instead of the present expression, a new matrix 2 2( N 1 ) ( N 1 )+ × +
S  is 

defined such that  

2 2 2 2( N 1 ) ( N 1 ) ( N 1 ) 1 ( N 1 ) 1+ × + + × + ×
⋅ =S C G           (21) 

where 2( N 1 ) 1+ ×
C  is the column matrix form of the square ( N 1 ) ( N 1 )+ × +C  matrix and  

2( N 1 ) 1+ ×
G  is the column matrix form of the square ( N 1 ) ( N 1 )+ × +G  matrix. Equation (21) 

corresponds to a system of + 2( N 1)  algebraic equations which yields the + 2( N 1)  

unknown Taylor coefficients p,qc .  

 

3.1. Particular solution 

In order to obtain the particular solution of the problem, the last 2( N 1)+  rows 

of the matrix equation (21) are replaced by the 2( N 1)+ -rows matrix of boundary 

conditions (18). After this replacement, (21) becomes 

⋅p p pS C =G              (22) 

The solution of (22) for pC  gives the desired Taylor coefficients p,qc  for the 

particular solution of the problem as 

inv( )= ⋅p p pC S G             (23) 

 

3.2. General solution 

This time, in order to obtain the general solution of the problem, in addition to 

the boundary conditions (18), two more rows of the matrix equation (21) are replaced 

by the 2-rows matrix of initial values (20). After the replacement of the last + +2( N 1) 2  

rows, (21) becomes 

⋅g g gS C =G              (24) 

The solution of (24) for gC  gives the desired Taylor coefficients p,qc  for the 

general solution of the problem as 

inv( )= ⋅g g gC S G             (25) 

It should be noted at this point that the matrix gS  may sometimes come out to be 

singular; therefore, the solution can not be determined. In this case, instead of the last 
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+ +2( N 1) 2  rows, any other + +2( N 1) 2  rows of (21) are replaced by the boundary 

condition and initial value rows for the purpose of eliminating the singularity.  

Finally, the particular and general solutions are obtained, respectively, by 

returning the column matrices pC and gC  back into square forms pC  and gC , and then 

substituting into (3).  

As seen above, once the problem is written in matrix form, the systems of 

equations are solved quite easily. The matrix operations throughout the whole work are 

performed using the symbolic computation package of MATLAB 6.5.1 [12]. 

 

3.3. Homogeneous solution 

Since the system is linear, the general solution is the sum of the particular 

solution plus the homogeneous solution; therefore, the homogeneous solution is derived 

by taking the difference of the general and particular solutions given in the previous 

sections. 

 

4. NUMERICAL APPLICATION 

 

In this section, the longitudinal vibration of a clamped-free elastic bar is 

considered. The geometrical and physical parameters of the bar are taken as L 5= m, 

A 0.01= m
2
, 10E 20 10= × N/m

2
, 38 10ρ = × kg/m

3
. 

4.1. Free vibration 

For free vibration, f ( x,t ) 0=  in Eq. (1). The initial conditions are 0u 0.01= m, 

and 0v 0= . Taking N 5=  and making a series expansion at ( ) ( )=0 0x ,t 0,0 , the unknown 

Taylor coefficients are computed using Eq. (25), and then substituted into Eq. (3); thus, 

the free vibration solution is obtained as 

3 2 8 4 5 3 3 2 7 5 5 5 43 125 10 3750 6 25 10 5 10 50 2 10 2 10− − −= × − + × − × + + × − ×fu . x xt . xt x x t x x t       (26) 

The graph of the free vibration solution (26) is illustrated in Figure 1. 

 

 
Fig. 1. Free vibration response of the system. 
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In order to validate and confirm the accuracy of the present method, a 

comparison is made with method of separation of variables (exact solution) given as [1] 

 
L

0
exact

n 0 0

( 2n 1) E tu x( 2n 1) x 2 ( 2n 1) x
u ( x,t ) sin sin dx cos

2L L L 2L 2L

π ρπ π∞

=

   ++ +  =
    

∑ ∫      (27) 

 

Figure 2 shows a comparison of the time response at the free end of the rod 

( 5x = ) calculated by the Taylor matrix method (26) with that of the exact solution (27). 

It is evident from the figure that the results of the Taylor matrix method and those of the 

exact solution are in a very good agreement in the interval [0,0.0011]. This comparison 

is made in order to examine the accuracy of the present method. Nevertheless, Taylor 

matrix method would still yield a valid numerical solution even if there exists no exact 

solution, because this method is not dependant on the existence of the exact solution. It 

is also shown in the figure that, increasing the truncation limit N  expands the interval 

of series solution and thus a better approximation is obtained. 

 

 
Fig. 2. Comparison of the Taylor solution with the exact solution at the free end. 

 

4.2. Forced vibration 

The forcing function in Eq. (1) is taken as 6f ( x,t ) 1 10 cos( 400 t )π= × . The 

boundary conditions and other parameters are as given in the previous section. The 

unknown Taylor coefficients are computed again using Eq. (25), and then substituted 

into Eq. (3). Thus, the general solution is determined as  

 
3 3 2 8 4 6 2 2 2

5 2 4 5 3 3 2 8 4

2 4 2 7 5 5 5 4

3 1190064 10 3 7678208 10 6 3039414 10 2 5 10 1 9739209

2 5975758 10 5 0237610 10 50 431531 1 3159473 10

1 0390303 10 2 0172612 10 2 0255735 10

− −

− −

− −

= × − × + × + × −

+ × − × + − ×

+ × + × − ×

gu . x . xt . xt . x . x t

. x t . x . x t . x

. x t . x . x t

 



 

 

M. Çevik 341 

The graph of the general solution is illustrated in Figure 3. 

 

 
Fig. 3. General solution of the clamped-free bar by the Taylor matrix method. 

 

The unknown Taylor coefficients of the particular solution are computed using Eq. (23), 

and then substituted into Eq. (3) which yields the particular solution as  

 
3 3 2 8 4 4 2 2 2 2

2 4 5 3 3 2 6 4 4 2

8 5

4 59522 10 3 0129512 10 2 5975758 10 2 5 10 1 9739209 10

25975758 4 0172682 10 20 780606 1 3159473 10 1 0390303

8 3122424 10

pu . x . xt . xt . x . x t

x t . x . x t . x . x t

. x

− −

− −

−

= − × + × − × + × − ×

+ + × − − × +

− ×
 

The graph of the particular solution is illustrated in Figure 4. 

 

 
Fig. 4. Particular solution of the clamped-free bar by the Taylor matrix method. 
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Following the procedure in Section 3.3, the homogeneous solution is determined as  
3 3 2 8 4 4 2 2 2

7 2 4 5 3 3 2 6 4 4 2

7 5 5 5 4

7 7142263 10 6 7807719 10 8 9015171 10 2 475 10 195 41817

2 5716 10 9 0410293 10 71 212137 1 3027878 10 1 02864

2 8484855 10 2 0255735 10

hu . x . xt . xt . x . x t

. x t . x . x t . x . x t

. x . x t

− −

− −

−

= × − × + × − × +

− × − × + + × −

+ × − ×
 

The graph of the homogeneous solution is illustrated in Figure 5. 

 

 
Fig. 5. Homogeneous solution of the clamped-free bar by the Taylor matrix method. 

 

 

Finally, the response at =x 5 is plotted in Fig. 6 for comparison purposes.  

 

 
Fig. 6. The response at the free end of the rod. 
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5. CONCLUSIONS 

 

A Taylor polynomial matrix solution has been presented for the free and forced 

longitudinal vibrations of a rod. Both particular and general solutions of the differential 

equation can be determined by this method. The applicability of the method is 

demonstrated by a numerical example which shows good agreement with the exact 

solution. The major advantage of the present method is that it is simple, straightforward 

and systematic when compared with other techniques. The method is applicable to any 

function that can be expanded to Taylor series. There are no assumptions made en route 

so that the solution can be found to any desired accuracy by increasing the truncation 

limit. The proposed method can be extended to other end conditions of the beam, and 

can very well be applied to other engineering vibration problems. 
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