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Abstract- The equations of motion and bending of Euler-Bernoulli beam are formulated 
using the nonlocal elasticity theory for cantilever microtubules (MTs). The method of 
differential quadrature (DQ) has been used for numerical modeling. The size effect is 
taken into consideration using the Eringen’s non-local elasticity theory. Frequencies and 
deflections of MTs are obtained. Numerical results are presented to show the effect of 
small-scale effect on bending and vibration of MTs. 
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1. INTRODUCTION 

Microtubules (MTs), microfilaments and intermediate filaments are the main 
components of cytoskeleton.  MTs are proteins organized in a network that is 
interconnected with microfilaments and intermediate filaments to form the cytoskeleton 
structures [1].  The mechanical properties of microtubules play an important role in 
processes such as cell division and intracellular transport [2]. There have been a number 
of experimental and mathematical studies in the last few decades dealing with the 
mechanical properties of MTs [3]. Microtubules are the most rigid ones of the 
cytoskeletal filaments and have the most complex structure.  Bending, vibration and 
buckling analyses of microtubules have been recently investigated using the continuum 
model [3-6]. Much attention has been devoted also to the mechanical behavior of 
micro/nano structures such as nanobeams, nanorods and nanotubes [7-15]. In this study, 
the governing equations for the beam model for cantilever MTs are derived for vibration 
and bending analysis. The results for static loading and vibration are obtained by using 
the DQ method. 

 

2. NONLOCAL CONTINUUM MECHANICS FOR BEAMS 

 
In the classical elasticity, the stress state of any body at a point x is related to the 

strain state at the same point x. Namely, the constitutive equations of classical 
(macroscopic) elasticity are algebraic relationships between the stress and strain 
components.  But this theory does not conflict the atomic theory of lattice dynamics and 
experimental observation of phonon dispersion. As stated by Eringen [16] the linear 
theory of nonlocal elasticity leads to a set of integropartial differential equations for the 
displacements field for homogeneous, isotropic bodies. According to the nonlocal 
elasticity theory of Eringen, the stress at any reference point in the body depends not 
only on the strains at this point but also on strains at all points of the body. This 
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definition of the Eringen’s nonlocal elasticity is based on the atomic theory of lattice 
dynamics and some experimental observations on phonon dispersion. In this theory, the 
fundamental equations involve spatial integrals which represent weighted averages of 
the contributions of related strain tensor at the related point in the body. Thus the theory 
introduces the small length scale effect through a spatial integral constitutive relation. 
For homogenous and isotropic elastic solids, the linear theory of nonlocal elasticity is 
described by the following equations [16]:  
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where klσ is the nonlocal stress tensor, ρ is the mass density of the body, lf  is the body 

(or applied) force density, lu is the displacement vector at a reference point x in the 

body, )(xτkl
′ is the classical (Cauchy) or local stress tensor at any point x′ in the body, 

)(xεkl
′ is the linear strain tensor at point x′  in the body, t denotes the time, V is the 

volume occupied by the elastic body, xxα ′−  is the distance in Euclidean form, 

λ and µ are the Lame constants. The non-local kernel xxα ′−  is defined as the impact 

of the strain at the point x′  on the stress at the point x in the elastic body. The value of χ  
depends on the ratio ( lae /0 ) which is material constant. The value a depends on the 

internal (granular distance, lattice parameter, distance between C-C bonds as molecular 
diameters) and external characteristic lengths (crack length or wave length) and 0e is a 

constant appropriate to each material for adjusting the model to match reliable results by 

experiments or some other theories. If  xα  takes on a Green function of a linear 

differential operator given as [16] 
 

( ) ( )xxδxxα −′=−′ℜ          (5) 

 
the nonlocal constitutive relation given by Eq.(2) is reduced to the differential equation 
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Furthermore the integro-partial differential equation given by Eq. (1) is also reduced to 
the following partial differential equation 
 

0)(, =−ℜ+ kllkl uρf &&τ         (7) 

 
Eringen (3) proposed a nonlocal model for this linear differential operator given as 
 

0)(1 22
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where 2∇ is the Laplacian. Consequently, the constitutive relations can be written as 
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3. GOVERNING EQUATIONS FOR MTs  

 
It is accepted that some mechanical behavior such as vibration, bending and buckling of 
the beam-like micro structures based on nonlocal elasticity theory are entirely different 
from their counterparts based on the classical (macro) beam theory [2-10]. Thus the 
theory based on size dependent nonlocal elasticity theory could serve as a more 
reasonable and proper approach in mechanical modeling of micro and nano sized 
components of nano mechanical devices [11-23]. The nonlocal theory of elasticity 
proposed by Eringen [16] has been widely used in the past five years in many nano 
mechanical problems including dislocation, crack, wave propagation, vibration analysis 
of nanobeams, nanotubes, carbon nanotubes, and microtubules. For MTs in one 
dimensional case, the nonlocal constitutive relations can be written as below [6] 
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where xxσ is the axial stress, xxε is the axial strain, E is the Young modulus. Assume that 

the transverse displacement of beam along y axial axis is ),( txw  in terms of spatial 

coordinate x and time variable t. For transverse vibration of MTs, the equilibrium 
conditions of Euler-Bernoulli beam can be written as  
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According to the linear theory of Euler-Bernoulli beam, the strain-displacements and the 
moment are given by 
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In this stage, multiplying by y on both sides of Eq. (12) and integrating over the cross-
section area of the beam, we obtain 
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After some mathematical manipulations, we have 
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By differentiating this equation with respect to the variable x twice, we obtain  
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Finally, by substituting Eq. (11) into Eq. (16) we obtain the following governing 
nonlocal equation for vibration of MTs based on Euler-Bernoulli beam theory [6] 
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It is exactly seen from the Eq. (17) that the local Euler-Bernoulli beam theory is 
obtained when the parameter 0e is set identically to zero.  In this case, nonlocal bending 

moment by using a harmonic function for w(x) can be written as 
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where ω is the angular frequency. If we consider the Euler-Bernoulli beam subjected to 
a distributed load, the general nonlocal equation for this case is given below  
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by using the relation between the load and deflection, that is 
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Substituting the Eq. (20) into Eq. (19) we obtain 
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Clamped-free boundary conditions are considered. These are: 
 
For clamped (C) end (at x=0) 
 

0=w  and 0/ =dxdw         (22a) 
For free (F) end (at x=L) 
 

0=V  and 0=M          (22b) 
 
 

4. DIFFERENTIAL QUADRATURE (DQ) METHOD 

 
Differential quadrature (DQ) method is a relatively new numerical technique in applied 
mechanics. The method of DQ can yield accurate solutions with relatively fewer grid 
points. It has been also successfully employed for different solid and fluid mechanics 
problems [17-21]. Unlike the DQ that uses the polynomial functions, such as power 
functions, Lagrange interpolated, and Legendre polynomials as the test functions, 
harmonic differential quadrature method uses harmonic or trigonometric functions as 
the test functions. Shu and Xue [17] proposed an explicit means of obtaining the 
weighting coefficients for the harmonic DQ. )(xf  is approximated by a Fourier series 

expansion in the form 
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and the Lagrange interpolated trigonometric polynomials are taken as 
 

2

)(
sin

2

)1(
sin

2

)1(
sin

2

)0(
sin

2

)(
sin

2

)1(
sin

2

)1(
sin

2

)0(
sin

πx Nxkπxkxkπxkxkπxxk

πx Nxπxkxπxkxπxx

(x)hk −
⋅⋅⋅+−−−

⋅⋅⋅
−

−
⋅⋅⋅+−−−

⋅⋅⋅
−

=   (24) 

 
for k = 0,1,2,....,N. According to the HDQ, the weighting coefficients of the first-order 
derivatives Aij

 
  for  i ≠ j can be obtained by using the following formula: 
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The weighting coefficients of the second-order derivatives Bij

  for i ≠ j can be obtained 
using following formula: 
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The weighting coefficients of the first-order and second-order derivatives Aij

(p) 
  for i = j  

are given as 
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 By using DQ discretization the Eq. (21) takes the form for bending 
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For vibration, the discrete form of governing equation takes the form: 
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The weighting coefficient of the fourth- and sixth-order derivatives (Dij, Fij) can be 
computed easily from ijB  by 
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5. NUMERICAL RESULTS 

 
In this section, several examples of MTs having clamped-free boundary conditions are 
examined. For this purpose, some numerical results in the forms of graphs are presented 
using the method of DQ. The material and geometric constants of MTs are given in 
Table 1. The symbol C-F, represents the MT having clamped edge at x=0 and free edge 
at x=L. To determine the accuracy and convergence of the present method for deflection 
analysis of MTs, numerical experimentation was carried out by varying the number of 
grid points N. 



 

 

Free Vibration and Bending Analyses of Cantilever Microtubules  

 

295 

 
Table 1. Material and geometric values of MTs 

Parameter Value 
E 2×109 N/m2 

I 105 ×10-34 m4 
ρ 1470 kg/m3 

υ  0.3 
 
The obtained results of non-dimensional static deflections and vibration computed for 
different N values are shown in Table 2. Exact analytical solution [4,5] is also given for 
comparison. It is important to state that the results given by these references [4] related 
to carbon nanotubes based on beam theory. However, we solved microtubules problem 
firstly. So we compare only coefficient (the results are presented as nondimensional). 
 
Table 2. Comparison of non-dimensional maximum deflection (w×EI/qL4) of C-F MTs 

under uniformly distributed loading 
Present DQ solutions  

e0a/L 
 

Analytical 
Result 
Ref.4 

N=5 N=7 N=9 N=11 N=13 

0.0 0.1250 0.12518 0.12504 0.12501 0.12501 0.12501 
0.20 0.0250 0.02511 0.02507 0.02506 0.02506 0.02506 
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Fig. 1. Deflection of C-F Carbon nanotubes (e0a=0.3×10-9 m) 

 
Excellent agreement has been achieved between the present results and the results 
obtained by analytical formula given by Reddy and Pang [4]. It is seen from this table 
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that when the grid point numbers reaches N=7 the present method gives accurate 
predictions for the deflections. For frequency values, however, there are no results for 
comparison. Figs. 1 and 2 show the displacement along the length of MTs for different 
values of load and nonlocal parameters. It can be seen that the effect of nonlocal 
parameter on the deflection is insignificant.  In general, the nonlocal parameter results 
in an increase in the transverse deflection of MTs under uniformly distributed load.  
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 Fig. 2. Deflection of C-F microtubules for different nonlocal parameter (q=0.2 N/m) 
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Fig.3. Frequencies of C-F MTs for different nonlocal parameter (L=5×10-6 m; α=e0a/L) 
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Fig.3 shows the variation of the frequency value with mode number of C-F 
microtubules for different nonlocal parameter. It is seen that the frequency values for all 
the three nonlocal parameters (α=e0a/L) increase as mode number increases. It is also 
shown that, the frequency values decrease with increasing nonlocal parameter. 
 

 

6. CONCLUDING REMARKS 

In this paper, free vibration and static behavior of MTs are investigated. The numerical 
results show that the nonlocal parameter is affected on static and dynamic behaviour of 
MTs. The method is suitable for the problem considered due to its generality, 
simplicity, and potential for further development. Although not provided here, the 
method is also useful in providing buckling solutions of MTs using nonlocal elasticity 
theory.  
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