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Abstract- A method for vibration analysis of proportional asymmetric plan frame 
buildings is presented in this paper. The whole structure is idealized as an equivalent 
shear-torsion beam in this method. The governing differential equations of equivalent 
shear-torsion beam are formulated using continuum approach and posed in the form of 
simple storey transfer matrix.  By using the storey transfer matrices and point transfer 
matrices which consider the inertial forces, system transfer matrix is obtained. Natural 
frequencies can be calculated by applying the boundary conditions. The structural 
properties of building may change in the proposed method. A numerical example has 
been solved at the end of study by a program written in MATLAB to verify the 
presented method.  The results of this example display the agreement between the 
proposed method and the other valid method given in literature. 
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1.INTRODUCTION 

 

 Number of methods, such as finite element method, has been developed for 
analyses of buildings. The continuum model is very simple and efficient method used in 
static and dynamic analysis of buildings. There are numerous studies [1-12] on 
asymmetric structures in the literature regarding continuum method. Kuang and Ng [4] 
considered the problem of doubly asymmetric structures; in which the motion is 
dominated by shear walls. For the analysis, the structure was replaced by an equivalent 
uniform cantilever whose deformation was coupled in flexure and warping torsion. 
Rafezy and Howson [8] proposed a global approach to the calculation of natural 
frequencies of doubly asymmetric, three dimensional, multi bay, and multi storey frame 
structures. It was assumed that the primary frames of the original structure ran in two 
original directions and that their properties may have varied in a step-wise fashion at 
one or more storey levels. The structure therefore divided naturally into uniform 
segments according to changes in section properties. A typical segment was then 
replaced by an equivalent shear- torsion coupled beam; whose governing differential 
equations were formulated by using continuum approach and posed in the form of a 
dynamic member stiffness matrix. Kuang and Ng [11] derived the governing equation 
and the corresponding eigenvalue problem of asymmetric frame structures using 
continuum assumption. A theoretical method of solution was proposed and a general 
solution to the eigenvalue equation of the problem was presented for determining the 
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coupled natural frequencies and associated mode shapes based on the theory of 
differential equations.   Step changes of properties along the height of the structure were 
not allowed in any of the studies with the exception of Rafezy and Howson’s. A method 
for vibration analysis of proportional asymmetric plan frame structures is suggested in 
this study. The following assumptions are made in this study; the behavior of the 
material is linear elastic, small displacement theory is valid, P-delta effects are 
negligible, the shear center and geometric center at each floor is assumed to lie on a 
vertical line through the height of structures, the axial deformations of columns and 
beams are negligible, the storey mass acts on the storey (floor) level, the frames are 
orthogonal and the floor system is rigid in its plane.   
 
        

2.ANALYSIS 
  
  
2.1. Physical Model 

 
 Figure 1 shows a typical floor plan of asymmetric, three dimensional frame 
structures [11]. Frame structures ignoring axial deformations, demonstrate Shear 
torsional beam behavior.  
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Figure 1 Typical flor plan of asymmetric frame structures [11] 
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2.2. Storey Transfer Matrices  
 Under the lateral loads which acting on the storey levels equations of  i.th storey 
can be written as , 
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where ui  and vi are the lateral deflections of the shear center, respectively, θi is the 
torsional rotation of  the floor plan about shear center at the given height, and zi is the 
vertical axis of each storey. 
 (GA)xi and(GA)yi  are the equivalent shear rigidity of the storey for framework in 
x and y directions. For frame elements which consists of n columns and n-1 beams, GA 
can be calculated as follows [13,14]; 
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where ∑ ic hI /   represents the sum of moments of inertia of the columns per unit 

height in i.th storey of frame j, and ∑ lI g /  represents the sum of moments of inertia of 

each beam per unit span across one floor of frame j .  
(GJ)i are the St. Venant torsion stiffness of i.th storey and can be calculates as follows 
[11]; 
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 When equations (1) ,(2) and (3) are solved with respect to the zi, ui(zi)  and vi(zi) 
and θi(zi) can be obtained as follows;   
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where c1, c2, c3, c4, c5, and c6    are integral constants. 
 By using equations (8), (9) and (10), the shear force in x and y direction, and 
torsion moment can be obtained as follows; 
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Equation (14) shows the matrix form of equations (8), (9), (10), (11), (12) and (13): 
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At the initial point of the storey for zi=0, equation (14) can be written as; 
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The vector in right-hand side of equation (15) can be shown as follows; 
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When vector c is solved by implementing equation (15) and substituted in equation 
(14), then equation (17) would be obtained. 
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Ti represents the storey transfer matrix for z=hi in equation (18). 
 

3. DYNAMIC ANALYSIS 
  
 The storey transfer matrices obtained from equation (17) can be used for the 
dynamic analysis of asymmetric- plane frame. Therefore, when considering the inertial 
forces in the storey levels, the relationship between the ith and the (i+1)th stories can be 
shown by the following matrix equation; 
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where,  mi is the mass of the ith storey and ω are the natural frequencies of the system 
and rm

2 is the inertial radius of gyration; and can be calculated as [8,11]; 
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yc and xc are the dimensions of the location of the geometric center in the coordinate 
system xSy and can be calculated as follows [8,11]; 
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Dynamic transfer matrix can be shown as Tdi  .   
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The displacements - internal forces relationship between the base and the top of the 
structure can be found as follows; 
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 The boundary conditions of the shear torsion beam are; 
 

1) ubase=0    2) vbase=0    3)  θbase=0    4) Vxtop=0  5)  Vytop=0   6)  Mttop=0 

 
When boundary conditions are considered for equation (24) for the nontrivial solution of 

d12dn1dn
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d ......TTTTt −−= , equation (25) can be attained;  
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The values of ω, which set the determinant to zero, are natural frequencies of the 
asymmetric plan-frame building. 
 

4. PROCEDURE OF COMPUTATION 

 

A program that considers the method presented in this study as basis, has been prepared 
in Matlab and the operation stages are presented below:  
 
1) The equivalent rigidities of each storey are calculated by using the geometric and 
material properties of the structure.   
2) Transfer matrices are calculated for each storey by using equivalent rigidities.  
3) System transfer matrix (equation 24) is obtained with the help of storey transfer 
matrices and inertia forces effecting to the storey levels with the procedure told in 
section 3.  
4) The nontrivial equation is obtained by using equation (25) as a result of the 
application of the boundary conditions.  
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5) The angular frequencies and relevant periods are found with the help of a method 
obtained from numerical analysis.  
6) The modes are found with the help of angular frequency and equation (19).  
7) The effective mass ratio and participation factor is found by using the modes.  
8) With the help of the acceleration and displacement spectrums, obtained from an 
earthquake record or design spectrum from codes, the displacement and internal forces 
are found by using effective mass and participation factor. 
 
 
 

5. A NUMERICAL EXAMPLE 

 

In this part of the study a numerical example was solved by a program written in 
MATLAB to validate the presented method. The results are compared with those given 
in the literature.  
 
5.1. Example 1 
A typical asymmetric frame system (Fig 1) is analyzed as an example. The general 
multi- bent is considered as asymmetric reinforced concrete frame building (Fig.1). The 
structure has 20 storeys with total height H=60 m, and floor dimensions L=18 m and 
B=24 m. The structural properties are given in Table 1. The natural frequencies 
calculated by this method are compared with the results in the reference [11]. The 
results are presented in Table 2, Figure 2, Figure 3 and Figure 4. 
 

Table 1   Structural Properties of  Asymmetric Frame Structures 

 
Structural Properties of  Asymmetric Frame Structures 

(GA)x 274300 kN 

(GA)y 297100 kN 

(GJ) 27972000 kNm2 

xc 0.692 m 

yc 0.5 m 

m 121.5 kNsn2/m 

rm 8.702 m 

 

 

Table 2   Comparison of natural frequencies in Example 1 
 

 

Natural frequencies of the first three modes (s-1) 

 Proposed Method Kuang and Ng [11] ETABS   [11] 

Mode     ω1 ω2 ω3     ω1 ω2 ω3     ω1 ω2 ω3 

1 2.090 2.166 2.488  2.140 2.218 2.548 2.078 2.191 2.487 

2 6.257 6.485 7.449 6.419 6.654 7..643 6.396 6.542 7.372 

3 10.388 10.767 12.367 10.698 11.089 12.737 10.422 10.850 12.345 
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 As to investigate the accuracy of the method, natural frequencies which were 
calculated by using proposed method are compared with the finite element solutions. 
The differences (Error) are given in Table 3. 
 
Table 3   Differences of natural frequencies of the proposed method and the finite element method (%) 

 

 Differences of natural 
frequencies (%) 

       Mode     1.     2.   3. 

1 0.58 -1.14 0.04 

2 -2.17 -0.87 1.04 

3 -0.33 -0.76 0.18 

 
 
 

 
The natural frequencies without considering the torsion are presented in Table 4. The 
main parameters which affect the torsion are the eccentricities (xc and yc). As the 
parameters are small, the differences between frequencies with torsion and without 
torsion are small. 
 
 
 
 
 

Table 4 Natural frequencies without torsion (s-1) 

 The frequencies without torsion 

Mode     ωx ωy 

1 2.102 2.187 

2 6.292 6.548 

3 10.446 10.87 

 

6. CONCLUSIONS 

 

This paper presents a method for vibration analysis of proportional asymmetric- plane 
frame buildings. The whole structure is idealized as an equivalent shear –torsion beam 
in this method. The governing differential equations of equivalent shear-torsion beam 
are formulated using continuum approach and posed in the form of simple storey 
transfer matrix.  By using the storey transfer matrices and point transfer matrices which 
consider the inertial forces, system transfer matrix is obtained. Natural frequencies can 
be calculated by applying the boundary conditions. Example solved in this study shows 
that results obtained from the proposed method are in close agreement with the solution 
which was developed in literature. The error of the proposed method is shown to be less 
than 5%. The structural properties of building may change in the proposed method and 
different numerical examples can also be solved. The proposed method is simple and 
very accurate enough to be used both at the concept design stage and for final analyses. 
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