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Abstract - In today’s severely competitive business environment, reducing 

replenishment costs has become one of the most important objectives for companies. 

This study deals with the replenishment problem under the condition of permissible 

delay in payments. To better reflect real-world business situations, we extend the 

traditional EOQ model by considering the situations of permissible delay in payments 

and multi-item replenishment. This study presents both single-item and joint multi-item 

replenishment models, and develop theorems to solve the problems. The objective of the 

single-item replenishment policy is to determine the optimal replenishment cycle time 

for each item while minimizing the total cost. The objective of the joint multi-item 

replenishment policy is to determine a common optimal replenishment cycle time for all 

items. Using computational analysis, we illustrate the solution procedures and draw 

conclusions. The results of this study can serve as a reference for business managers or 

administrators. 
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1. INTRODUCTION 

 

In practice, suppliers often provide forward financing to retailers. In this 

situation, the supplier allows the retailer a credit period in which to settle the amount 

owed for goods already supplied. Since the publication of Goyal’s [1] paper almost 25 

years ago, over 50 papers have appeared in the literature dealing with variety of trade 

credit situations including pricing-dependent demand (Abad and Jaggi [2], Sheen and 

Tsao [3], Tsao and Sheen [4]), shortages allowed (Jamal et al. [5], Ouyang et al. [6]), 

partial backlogging and deterioration (Aggarwal and Jaggi [7], Hwang and Shinn [8]), 

and variable cost (Tsao and Sheen [9]) etc. These studies indicate that the issue of trade 

credit is a very popular field of research. It is essential to consider trade credit when 

formulating a decision-making model. 

Joint multi-item replenishment strategies are already widely applied in the real 

world. Examples of this type of strategy include the supplying of parts for automotive 
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assembly (Hahm and Yano [10]) and refrigerated goods to supermarkets (Hammer [11]). 

In the automotive industry, a supplier normally produces several different items for a 

single customer and puts together a combined shipment for that customer. In the grocery 

supply industry, different types of refrigerated goods (e.g., General Mills yogurt and 

Land O’Lakes butter) can be shipped in the same truck to the same supermarket 

(Hammer [11]). Other researches such as Goyal [12], Kao [13], Graves [14], 

Ben-Khedher and Yano [15], van Eijs [16], Rempala [17], and Chen and Chen [18] have 

proposed models and algorithms for solving multi-item replenishment problems for 

different situations.   

However, the trade credit papers above only consider single-item problems, and 

ignore the effect of joint multi-item replenishment. In practice, trade credit and 

multi-item replenishment coexist. Therefore, none of these studies can be an appropriate 

reference. To address this problem, this paper formulates a model that combines the 

credit period with the joint multi-item replenishment policy. As a result, this is the first 

study to consider the joint replenishment problem in a trade credit situation. The 

objective of this study is to determine the optimal replenishment policy while still 

minimizing total cost. We present both single-item and joint multi-item replenishment 

models and develop theorems to solve these reploenishment problems. This study also 

compares, for the first time, the performance of these two policies under delay in 

payments. Using computational analysis, we illustrate the solution procedures and draw 

conclusions. Results show that the joint multi-item replenishment policy is better than 

the single-item replenishment policy. We also provide useful references for managerial 

decision-making and administration based on mathematical modeling. 

This study uses the following notations. PI  is the annual interest charged per 

dollar, eI  is the annual interest earned per dollar, M  is the credit period, iT  is the 

replenishment cycle time for item i in the single-item replenishment policy, T  is the 

replenishment cycle time in the joint replenishment policy, A  is the major ordering 

cost per order, ia  is the minor ordering cost for item i, ip  is the selling price per unit 

for item i, ic  is the purchasing price per unit for item i, id  is the demand rate for item 

i, ih  is the inventory holding cost per unit for item I, k  is the number of items, θ  is 

the set of units whose replenishment cycle is longer or equal to the credit period, and φ  

is the set of units whose replenishment cycle is shorter than the credit period. 

The mathematical model is developed under the following assumptions: 1. The 

demand rates for items are constant with time. 2. Replenishments occur instantaneously. 

3. Shortages are not allowed. 4. The selling price is higher than the purchasing price. 5. 

The unit retail price of the products sold during the credit period is deposited in an 
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interest bearing account with rate eI . At the end of this period, the credit is settled and 

the retailer starts paying interest charges for the items in stock with rate PI  ( PI  > eI ). 

 

2. THE SINGLE-ITEM REPLINISHMENT MODEL 

In the single-item replenishment model, the total annual cost ( )1 iTVC T  has two 

different functions as follows: 
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  Case 1 ：When iT M≥ , in which i belongs to θ , the first and second-order derivatives 

of ( )11 iTVC T  with respect to iT  are 
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  Case 2 ：When iT M< , in which i belongs toφ , the first and second-order derivatives of 

( )12 iTVC T  with respect to iT  are 
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Equation ( )7  implies that ( )12 iTVC T  is convex on 0iT > . Let 

( )2

1 2 2 i i i p i eA a d M c I p I∆ = + + − , then Equation ( )5  implies that ( )11 iTVC T  is 

convex on 0iT >  if 1>0∆ . Furthermore, Equations ( )1  and ( )2  imply that 

( )1 iTVC T  is convex on 0iT >  if 1>0∆ . At iT M=  , we find 

( ) ( )11 12TVC M TVC M= . Hence, ( )1 iTVC T  is continuous and well-defined.  
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To minimize ( )1 iTVC T , solve Equations ( )6 0=  to obtain the optimal 

replenishment cycle time for item i in iT M< ,  

( )
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the optimal order quantity for item i in iT M<  is ( ) ( )* *
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If 1>0∆ , Equation ( )5  implies that ( )11 iTVC T  is convex on 0iT > . Solve Equation 

( )4 0=  to obtain the optimal replenishment cycle time for item i in iT M≥ , 
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and the optimal order quantity for item i in iT M≥  is 

( ) ( )2
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Based on the equations above, we derive and deduce Theorem 1 and Theorem 2 

to determine the optimal replenishment cycle time for single-item replenishment when 

1 0∆ <  and 1 0∆ ≥  respectively.  

Theorem 1: If 1 0∆ < , then ( )1 iTVC T  has the minimum value * *

1 12T T= . 

Proof: Because ( )12 iTVC T  is convex on 0iT >  and 
*

12T M< . Therefore, ( )12 iTVC T  

is decreasing on ( *

120,T 
  and increasing on 

*

12 ,T M 
  . As a result, ( )12 iTVC T  has a 

minimum value at 
*

12T  on ( ]0,M . On the other hand, if 1<0∆ , Equation ( )4  implies 

that ( )11 0iTVC T′ ≥  and ( )11 iTVC T  is increasing on 0iT > . Thus, ( )11 iTVC T  is 

increasing on [ ),M ∞ . So ( )11 iTVC T  has a minimum value at M . From 

( ) ( )11 12TVC M TVC M= , Equations ( )1  and ( )2  imply that ( )11 iTVC T  has the 

minimum value at 
*

12T  on 0iT > . Therefore, 
* *

1 12T T= .     □ 

Theorem 2:  If 1 0∆ ≥ , let ( )2

2 2 2 i i i i eA a d M h p I∆ = + − + , then  

(a) When 2 0∆ > , the optimal replenishment cycle time is * *

1 11T T= . 

(b) When 2 0∆ < , the optimal replenishment cycle time is * *

1 12T T= . 
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(c) When 2 0∆ = , the optimal replenishment interval is * * *

1 11 12T T T M= = = . 

Proof: (a) If 2 0∆ > , Equations (9) and (8) imply that *

11T M>  and *

12T M> . 

According to the convexities and the definitions of ( )11 iTVC T  for Case 1 and 

( )12 iTVC T  for Case 2, we find that ( )11 iTVC T  is decreasing on *

11[ , ]M T  and 

( )12 iTVC T  is decreasing on (0, ]M . This means that ( )11 iTVC T  has the minimum 

value at *

11T  and ( )12 iTVC T  has the minimum value at M . Therefore, from 

*

12 11 11 11( ) ( ) ( )TVC M TVC M TVC T= ≥ , we know that ( )1 iTVC T  has the minimum value 

at 
* *

1 12T T= . The proofs in (b) and (c) are similar to that in (a).       □ 

3. THE JOINT MULTI-ITEM REPLENISHMENT MODEL 

In the joint multi-item replenishment model, the total annual cost ( )2 iTVC T  has 

two different functions as follows: 
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  Case 2 ： When T M< , the first and second-order derivatives of ( )22 iTVC T  with 
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Equation ( )15 implies that ( )22TVC T  is convex on 0T > . Let 
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( )2TVC T  is convex on 0T >  when 3 0∆ > . At T M=  , we find 
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To minimize ( )2TVC T , solve Equations ( )14 0=  to obtain the optimal 
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the optimal order quantity in T M<  is ( )* * 1
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If 3 0∆ > , Equation ( )13  implies that ( )21TVC T  is convex on 0T > . Solve 

Equation ( )12 0=  to obtain the optimal replenishment cycle time in T M> , 
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and the optimal order quantity in T M≥  is 
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Based on the equations above, we derive and deduce Theorem 3 and Theorem 4 to 

determine the optimal replenishment cycle time for joint multi-item replenishment when 

3 0∆ <  and 3 0∆ ≥  respectively.  

Theorem 3: If 3 0∆ < , then ( )2TVC T  has the minimum value * *

2 22T T= . 

Proof: ( )22TVC T  is convex on 0T >  and *

22T M< . Therefore, ( )22TVC T  is 
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decreasing on ( *

220,T   and increasing on *

22 ,T M   . Thus, ( )22TVC T  has a 

minimum value at *

22T  on ( ]0,M . On the other hand, if 3 0∆ < , Equation ( )14  implies 

that ( )21 0TVC T′ ≥  and ( )21TVC T  is increasing on 0T > . Therefore, ( )21TVC T  is 

increasing on [ ),M ∞ . Thus, ( )21TVC T  has a minimum value at M . From 

( ) ( )21 22TVC M TVC M=  , Equations ( )11  and ( )12  imply that ( )2TVC T  has the 

minimum value at *

22T  on 0T > . Therefore, * *

2 22T T= .      □ 

Theorem 4:  If 3 0∆ ≥ , let 2
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(a) When 4 0∆ > , the optimal replenishment cycle time is * *

2 21T T= . 

(b) When 4 0∆ < , the optimal replenishment cycle time is * *

2 22T T= . 

(c) When 4 0∆ = , the optimal replenishment interval is * * *

2 21 22T T T M= = = . 

Proof: (a) If 4 0∆ > , Equations (17) and (16) imply that 
*

21T M≥  and *

22T M≥ . The 

convexities and the definitions of ( )21 iTVC T  for Case 1 and ( )22 iTVC T  for Case 2 

show that that ( )21 iTVC T  is decreasing on *

21[ , ]M T  and ( )22 iTVC T  is decreasing on 

(0, ]M . This means that ( )21 iTVC T  has the minimum value at *

21T  and ( )22 iTVC T  

has the minimum value at M . Therefore, from *

22 21 21 21( ) ( ) ( )TVC M TVC M TVC T= ≥ , 

we know that ( )2 iTVC T  has the minimum value at * *

2 21T T= . The proofs in (b) and (c) 

are similar to that in (a).       □ 

4. COMPUTATIONAL ANALYSIS 

 

This section discusses five items and summarizes the parameter values in Table 1. 
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Table 1 values of parameters 

 M A di ci Ip pi Ie hi ai 

Item 1 
30

365
 500 1,000 25 0.15 30 0.1 2 3 

Item 2 
30

365
 500 800 125 0.15 150 0.1 3 3 

Item 3 
30

365
 500 600 170 0.15 200 0.1 2 3 

Item 4 
30

365
 500 400 200 0.15 250 0.1 3 3 

Item 5 
30

365
 500 50 350 0.15 420 0.1 4 3 

 

4.1. The Single-item Replenishment Model v.s. The Joint Multi-item 

Replenishment Model 

Using Theorem 2 for item 1, 1 1011.07∆ =  and 2 972.223∆ = , the optimal 

replenishment cycle time is *

11 0.41933T =  and the total cost is 2102.93 . Using 

Theorem 2 for item 2, 1 1026.27∆ =  and 2 908.721∆ = , the optimal replenishment 

cycle time is *

11 0.24286T =  and the total cost is 2992.88 . Using Theorem 2 for item 3, 

1 1028.29∆ =  and 2 916.828∆ = , the optimal replenishment cycle time is 
*

11 0.249641T =  and the total cost is 2861.55 . Using Theorem 2 for item 4, 

1 1019.51∆ =  and 2 930.339∆ = , the optimal replenishment cycle time is 
*

11 0.277913T =  and the total cost is 2682.15 . Using Theorem 2 for item 5, 

1 1009.55∆ =  and 2 = 990.462∆ , the optimal replenishment cycle time is 
*

11 0.597797T =  and the total cost is 1473.02 . The sum of these items, or total cost, is 

12112.5 .  

For the joint multi-item replenishment model, we get 3 =2094.68∆ , 

4 718.572∆ = . Using Theorem 4, the optimal replenishment cycle time is 
* *

2 22 0.140221T T= =  and the total cost is 3806.14 . The results above show that the 

joint multi-item replenishment model is better than the single-item replenishment model 

in reducing total cost. 

 

4.2. Effects of different parameter values 

Table 2 presents the effects of pI  and eI  on total cost and decision, showing 

that when eI  increases, the optimal replenishment cycle time *T  and total cost TVC  
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will decrease. When pI  increases, the optimal replenishment cycle time *T  will 

decrease, but the total cost TVC  will increase.  

 

Table 2  Effects of pI and eI  

 Ie 

 0.08 0.1 0.12 

0.13 
TVC=3900.5 

T*=0.149797 

TVC=3722.01 

T*=0.146168 

TVC=3538.97 

T*=0.142446 

0.15 
TVC=3992.29 

T*=0.143565 

TVC=3806.14 

T*=0.140221 

TVC=3615.44 

T*=0.136796 

Ip 

0.17 
TVC=4071.74 

T*=0.138436 

TVC=3878.77 

T*=0.135331 

TVC=3681.27 

T*=0.132154 

 

Table 3 presents the effects of T and M on total cost and decision, showing that 

when A  increases, the optimal replenishment cycle time *T  and total cost TVC  will 

increase. When M  increases, the optimal replenishment cycle time *T  will increase, 

but the total cost TVC  will decrease. 

 

Table 3  Effects ofM andT  

 A 

 500 700 1000 

15

365
 

TVC=5631.54 

T*=0.137079 

TVC=6972.7 

T*=0.161168 

TVC=8673.02 

T*=0.191708 

30

365
 

TVC=3806.14 

T*=0.140221 

TVC=5121.62 

T*=0.163849 

TVC=6798.46 

T*=0.193968 

M 

45

365
 

TVC=2088.97 

T*=0.145308 

TVC=3364.77 

T*=0.168223 

TVC=5004.57 

T*=0.197676 

 

5. CONCLUSION 

 

This paper considers replenishment problems under the permissible delay in 

payments. We present both single-item and joint multi-item replenishment models, and 

develop theorems to solve these problems. The objective of this study is to determine 

the optimal replenishment policy while minimizing the total cost. Using computational 

examples, we illustrate the solution procedures and show that the joint multi-item 

replenishment policy is better than the single-item replenishment policy. Numerical 
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analysis revealsthe effects of interest charged, interest earned, ordering cost, and credit 

period on the total cost and replenishment decision. This study provides a useful 

reference for managerial decision-making and administration. 
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