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Abstract- The performance of several Database Management Systems (DBMSs) and 

Data Stream Management Systems (DSMSs) queries is dominated by the cost of the 

sorting algorithm. Sorting is an integral component of most database management 

systems. Stable sorting algorithms play an important role in DBMS queries since such 

operations requires stable sorting outputs. In this paper, we present a new stable sorting 

algorithm for internal sorting that scans an unsorted input array of length n and arranges 

it into m sorted sub-arrays. By using the m-way merge algorithm, the sorted m sub-

arrays will be merged into the final output sorted array. The proposed algorithm keeps 

the stability of the keys intact. The scanning process requires linear time complexity 

(O(n)) in the best case, and O(n log m) in the worst case,  and the m-way merge process 

requires O (n log m) time complexity. The proposed algorithm has a time complexity of 

O (n log m) element comparisons. The performed experimental results have shown that 

the proposed algorithm outperforms other stable sorting algorithms that are designed for 

join-based queries.  
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1. INTRODUCTION 

 

A stable sort is a sorting algorithm which when applied to records with same key 

values, they retain their order. In other words, for two records with the same key value, 

the outcome of the sorting algorithm will have the records in the same order, although 

their positions relative to other records may change [1, 2, 3]. Stability of a sorting 

algorithm is a property of the algorithm, not of the comparison mechanism [4, 5, 6, 7]. 

For instance, quick Sorting algorithm is not stable while Merge Sort algorithm is stable.  

Sorting is an integral component of most database management systems 

(DBMSs) [8, 2, 9]. Sorting can be both computation-intensive as well as memory 

intensive [10, 7, 11, 12]. The performance of DBMS queries is often dominated by the 

cost of the sorting algorithm. Most DBMS queries require sorting with stable results [4, 

10, 13]. 

External memory sorting algorithms reorganize large datasets. They typically 

perform two phases [4, 14, 15, 16]. The first phase produces a set of ordered sub-files, 

while the second phase processes these sub-files to produce a totally ordered output data 

file. A popular and important class of the external memory sorting algorithms is the 

Merge-Based Sorting algorithm, where input data is partitioned into data chunks of 

approximately equal size, sorts these data chunks in main memory and writes the “runs” 
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to disk. The second phase merges the runs in main memory and writes the sorted output 

to the disk.  Our proposed algorithm is inspired by the Merge-Based Sorting algorithm. 

In order to sort n elements placed in memory array A, the proposed algorithm divides 

the n elements of A into m ordered sub-arrays, each with length l; l= n/m. Initially, all 

sub-arrays are empty, then elements of array A are scanned and inserted into the ordered 

sub-arrays based on the fullness of sub-arrays, and whether the inserted element is 

greater than the last element of the sub-arrays or not. If all sub-arrays do not satisfy the 

insertion criteria, the scanned element is inserted in place into a temporary sub-array, 

temp, with length l. If the temporary sub-array is full, all sub-arrays and sub-array temp 

are merged. The merged elements are placed into the sub-arrays by fully filling them in 

order. The process continues with the elements left in array A. After scanning all 

elements of A, the produced m sub-arrays are merged to form the final sorted list. 

External memory sorting performance is often limited by I/O performance [17, 

13, 18]. Disk I/O bandwidth is significantly lower than main memory bandwidth. 

Therefore, it is important to minimize the amount of data written to and read from disks. 

Large files will not fit in RAM so we must sort the data in at least two passes. Each pass 

reads and writes to the disk. CPU-based sorting algorithms incur significant cache 

misses on data sets that do not fit in the data caches [19, 18]. Therefore, it is not 

efficient to sort partitions comparable to the size of main memory [20, 16, 21]. These 

results in a tradeoff between disk I/O performance and CPU computation time spent in 

sorting the partitions. For example, in merge-based external sorting algorithms, the time 

spent in Phase 1 can be reduced by choosing run sizes comparable to the CPU cache 

sizes. However, this choice increases the time spent in Phase 2 to merge a large number 

of small runs.  

In this paper, a new stable sorting algorithm that reduces the number of 

comparisons, element moves, and required auxiliary storage will be presented. Our 

algorithm operates when used as an internal sorter with an average m log m element 

comparisons, m log m element moves, and exactly n auxiliary storage, where n is the 

size of the input array to be sorted, and m is the average size of sub-arrays. No auxiliary 

arithmetic operations with indices will be needed. The proposed algorithm has been 

tested in extensive performance studies.  Experimental results have shown that when the 

proposed algorithm is adapted to sort externally, it accelerates the computation of equi-

join and non-equi-join queries in databases, and numerical statistic queries on data 

streams. The benchmarks used in the performance studies are databases consisting of up 

to one million values.  

In the following sections, the proposed algorithm, and the computational 

requirement analysis will be presented in details. The proposed algorithm and the proof 

of its stability are presented in section 2, and the m -way-merge algorithm is discussed 

in section 3. The analysis of time complexity and the analysis of the external version of 

the proposed algorithm are discussed in section 4. Experimental results are presented in 

section 5. Section 6 concludes the paper. 
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2. THE PROPOSED STABLE SORTING ALGORITHM 

   

There are some issues that have to be considered to guarantee stability. First, the 

input array has to be scanned in sequential order from element a1 to element an. In order 

to determine where to place a specific element in a segment, the element should be 

placed in the first segment that meets the condition that this element is greater than or 

equal to the last element in the sub-array.   Also, some issues have to be considered in 

merging. The m-way-merge operation that produces the output list, should select values 

from segments �1, �2, …, �m in preference according to the segment order. This will 

be discussed further in the following section. 

The main idea of the proposed algorithm is to divide the elements ai, i=1,…, n of 

the input array  A with length n into some disjoint segments σ0, σ1, . . . , σm, of equal  

lengths l; l= n/m. All elements in segments σi’s, i=1,…, m, are sorted according to key 

k. The algorithm starts with empty segments σ0, σ1, . . . , σm , i.e., for each segment σi , 

i=1,…, m, the pointer to its last element lasti=0. ai is compared to the last element of the 

not full segments σj, j=1,…, m. ai should fall in one of the following two cases: 

• ai ≥ σj (lastj), where  j=1,…, m: 

 ai is appended to σj.  

• ai < σj (lastj) for all j with lastj≠l:  

insert ai in σtemp. 
 

If the temporary segment σtemp is full, then the m segments are m-way-merged, 

the 2-way-merged with the temporary segment σtemp. Assume the number of sorted 

elements is L. The L elements are divided orderly on the first S segments; S= ; such 

that the first S-1 segments are full. The first S-1 segments will not be included in the 

subsequent inserts.  The algorithm will consider only those buffers from S to m.  

In the merging process, we should consider the segments order. When two 

segments  and   , k1 <k2 are merged and if there exists two elements in and 

 in  , such that  , then in the merged segment, is placed before . 

The final sorted array is obtained by using an m-way merging algorithm. The new 

proposed algorithm is given below. 

 

Algorithm Stable-Sorting 
{ 

 // The first part of the proposed algorithm is the stable formation of segments. An additional m 

sub-arrays σj, and lastj =0, j=1,…, m  are required. // 

 i=1;  // i is set to the first element of the input array// 

 b=1; // b is the starting buffer to append items to// 

 do while (i ≤ n) 

  { 

   STEP1: Read element ai from the input array; 

   STEP2: 

    J=b; append =0;  

    do until (append =1 or j>m) 

    {if ai ≥ σj (lastj) and lastj≠l  // subarray σj  is not full, and ai ≥ last-element in σj; 

     then { lastj +=1; σj (lastj)= ai ; //append ai to σj;  

       append = 1;} 
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  else j++; 

 } 

 if (append = 1 ) 

  then { append = 0; i++ ; goto STEP1;}; 

else {insert ai in its right position in σtemp;lasttemp +1; i++ ; // all subarrays σj are 

not suitable for insertion (either full or ai < last-element in σj); 

if  lasttemp > l then 

 {(m-b+1)-way-merge segments σj’s, j=b,…, m; 

  2-way-merge the results with segment σtemp; 

L is the total number of elements in the merged buffers; 

Do while L>l 

  {Fill buffer b with l items; 

   L=L-l 

   b=b+1;} 

Fill buffer b with L items; 

goto STEP1;} 

  } 

m-way-merge segments σj’s, i=1,…, m into final output array; 

} 

 

The following lemma states that the Stable-Sorting algorithm is stable. 

Lemma:  Let A be an array with n elements. The Stable Sort algorithm guarantees that 

the resulted sorted array is stable. 

Following the steps of the Stable Sort algorithm, the proof of the above lemma is 

obvious.  

 

 

3. THE MERGING 

 

In this section, the m -way-merge algorithm is going to be discussed. 2-way-

merge is discussed first to show complexity measures and stability issues of the 

algorithm. The discussion is then generalized to the proposed more general case of m-

way-merge. 

Merging is the process whereby two sorted lists of elements are combined to 

create a single sorted list. Originally, most sorting was done on large database systems 

using a technique known as merging. Merging is used because it easily allows a 

compromise between expensive internal Random Access Memory (RAM) and external 

magnetic mediums where the cost of RAM is an important factor. Originally, merging is 

an external method for combining two or more sorted lists to create a single sorted list 

on an external medium.  

The most natural way to merge two lists A with n1 elements and B with n2 

elements of presorted data values is to compare the values at the lowest (smallest) 

locations in both lists and then output the smaller of the two. The next two smallest 

values are compared in a similar manner and the smaller value output. This process is 

repeated until one of the lists is exhausted. Merging in this way requires n1+ n2-1 

comparisons and n1+n2 data moves to create a sorted list of n1+n2 elements. The order in 

which each value in the A and B list is selected for output to the C list is labeled by their 

subscript in the second listing of A and B. Merging in this manner is easily made stable. 
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In addition, this lower limit is guaranteed regardless of the nature of the input 

permutation.  

       A merge algorithm is stable if it always leaves sequences of equal data values in 

the same order at the end of merging. 

       Example:  Let A and B be two sorted lists with the values given in Figure 1.a. 

The 2-way merge algorithm merges lists A and B into list C as given in Figure 1.b. 
 

 A  B   C 

1 1 1 2  1 from A1 1 

2 2 2 7  2 from B1 2 

3 6 3 7  3 from A2 2 

4 11 4 9  4 from A3 6 

5 15 5 11  5 from B2 7 

6 17 6 15  6 from B3 7 

7 17 7 17  7 from B4 9 

     8 from A4 11 

     9 from B5 11 

     10 from A5 15 

     11 from B6 15 

     12 from A6 17 

     13 from A7 17 

     14 from B7 17 

       

 Figure 1.a  Figure 1.b 
 

Figure 1. The 2-way merging of A and B 
 

If the merge algorithm is merging two lists such that it keeps the indices of a sequence 

of equal values from a given list in sorted order, i.e. they are kept in the same order as 

they were before the merge as illustrated in the example 1, the merge algorithm is said 

to be stable. Otherwise, the algorithm is said to be unstable.  

Stability is defined such that values from A are always given preference 

whenever a tie occurs between values in A and B, and that the indices of equal set of 

values are kept in sorted order at the end of the merge operation. The proposed m-way-

merge operation can be implemented as a series of 2-way merge operations with 

preserving stability requirements, or can be merge m lists in the same time. The 2-way-

merge operation can be generalized for m sorted lists, where m is some positive integer 

> 2. For keeping track of the next smallest value in each list during the merge operation, 

m pointers will be needed. The number of comparisons needed for merging m sorted 

lists, each consisting of l data items is O(n log2(m)), where n = ml.  

 

4. PERFORMANCE ANALYSIS 

 

3.1. Time Complexity 

 Scanning the elements of the input array of n elements and divide it into m 

sorted sub-arrays is done in linear time, except when the temporary array reaches its 

maximum length. The best case, when the temporary array is not reaching its maximum 
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length,  needs O(n) comparison and O(n) moves. The maximum time required for doing 

the sorting process, and keeping the stability required, needs O(n log m) comparison and 

O(n) moves.  In the worst case, each of the empty buffers will hold only one element, 

and the algorithm may have to insert elements to the temporary array until it gets full. 

The process is repeated until all elements are inserted. Below, we prove that the Stable-

Sorting algorithm has a time complexity of O (n log m), where m could be much smaller 

than n. 

Assume n=m
r
, for some integer r > 0, if r=1, which means number of buffers m 

equals to number of records n, the proposed approach could have, in the worst case, O(n 

log n) time complexity. If the number of buffers is decreased, by increasing r, we may 

get less cost but to a certain limit. If ; , )   the proposed approach 

could have O(n log n) cost. From fig. 2, 3, and 4, we conclude that the best value for r is 

4. 

 

Best Case: 

<= n+ n log(m)+l log(l) � O(n log (m)) 

Worst Case: 

1 :  m   getting m elements into m buffers 

:  l log(l)  getting l elements (sorted) into temp buffer 

:  m log(m)  m-way merge of m buffers 

: (m+l)  merge with temp buffer 

:  (m+ l) placing l elements in buffer 1 and m elements in buffer 2 

: Total = m +l log(l) + m log(m) + 2 (m+l) 

In general in iteration i 

i :  m-i  getting m-i into (m-i) buffers 

:  l log(l)  getting l elements (sorted) into temp buffer 

:  <(im-i)log(m)  (m-i)-way merge of m-i buffers < im log (m-i) 

:  (im-i+ l)  merge with temp buffer 

:  (im-i+ l) placing l elements in buffer m-i and im-x(i) elements in buffer i 

: Total =  (m-i) +l log(l) + (im- i)/2) log(m) + 2(im- i+l)  

The process will be repeated m times 

Total cost  or 

Total cost  

 
In case that  n=m

3
, then l=m

2 

Total cost  

Total cost is O(n log m) 

if n=m
4
, l=m

3 

Total cost  

Total cost is O(n log m) 

In general, if n=m
r
, l=m

r-1 

Total cost  
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If r=1; m=n, the proposed approach could have O(n log n) cost. If we decrease the 

number of buffers, by increasing r, we may get less cost but to a certain limit. Part of the 

total cost equation, ( ), will increase the total cost. If ; 

, )   the proposed approach could have O(n log n) cost. From Figures 2, 3, 

and 4, the best value of r is 4. 

  

 
 

3.2. Space Complexity 

        There is extra auxiliary storage equal to an array of the same size as the input 

array. Clever implementation of the proposed Stable-Sorting algorithm can decrease the 

required auxiliary storage. There are no indices or any other hidden data structures 

required for the execution of the algorithm. Auxiliary storage that is required for the 

proposed algorithm is O(n).     

 

 

3.3. External Sorting Version of The Proposed Algorithm 

In the proposed implementation of our algorithm, the input file is sorted in two 

passes. Each pass reads and writes to the disk. The proposed algorithm is adapted to 

perform external sorting using run sizes comparable to the available RAM size to 

minimize the time required for the second part of the algorithm which is the final 

merging operation.  This is done by assuming the input array will be sorted in a file on 



 

 

H. I. Mathkour  

 

215 

the hard disk called f. The file f is much larger than the available space in main memory. 

For an available main memory of g bytes, we divide the space available in the main 

memory into two partitions, g1 and g2; g=g1+g2. The first g1 bytes of the file f are 

copied into the first partition. The other g2 bytes of the main memory are divided into 

m+1 blocks each has length l; g2=(m+1)l and g1=ml. We perform the proposed 

algorithm on the portion of f in the main memory. The g1 bytes of the sorted output will 

be stored back in file f in place of its first g1 bytes. Then we repeat the same procedure 

on the next g1 bytes from file f until the whole file is exhausted. The second part is to m-

way-merge, the sorted g1 chunks of file f. The merge procedure is performed externally. 

 

 

5. EXPERIMENTAL RESULTS 

 

Performance study is being carried on our proposed algorithm as an internal 

sorting algorithm and its performance is compared to other well known internal sorting 

algorithms. These sorting algorithms are Merge-sort, K-way merge sort and quick sort 

algorithms.  
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(c) (d) 

Figure 5. The proposed algorithm vs : (a) Mergesort, (b) K-way Mergesort, and (c) Quicksort 

(d) A comparison of various sorting algorithms  
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The performance improvement obtained by using our proposed algorithm with 

m=4, against mergesort (Figure 5.a) is gaining on the average a 45% speedup over 

mergesort optimized CPU implementation. With m=8, our proposed algorithm on 

average is 40% faster than k-way mergesort optimized CPU implementation (Figure 

5.b).  

The performance improvement obtained by using our proposed algorithm with 

m=4, against Quick sort (Figure 5.c) is a gaining of 35% on the average over Quick sort 

optimized CPU implementation, and finally, the performance improvement obtained 

using our proposed algorithm against Quick sort (Figure 5.d) is gaining on the average a 

20% speedup over Quick sort optimized CPU implementation. Figure 5.d depicts the 

running times of sorting algorithms in milliseconds for a number of keys to be sorted 

ranging from 1000 to 8000 keys each key is 20 characters long. 

 

6. CONCLUSIONS 

 

In this paper, a new sorting algorithm was presented. This algorithm is stable 

sorting algorithm with O(n log m), comparisons where m is much smaller than n,  and 

O(n) moves and O(n) auxiliary storage. Comparison of the new proposed algorithm and 

some well-known algorithms has proven that the new algorithm outperforms the other 

algorithms. Further, there is no auxiliary arithmetic operations with indices required. 

Besides, this algorithm was shown to be of practical interest, in join-based queries. We 

have improved the performance of join operations by applying our fast sorting 

algorithm and compared its performance against other optimized nested join algorithms. 

Our algorithm also has low bandwidth requirements 
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