

 Mathematical and Computational Applications, Vol. 15, No. 2, pp. 208-217, 2010.

 © Association for Scientific Research

A NEW SORTING ALGORITHM FOR ACCELERATING JOIN-BASED

QUERIES

Hassan I. Mathkour
Department of Computer Science

King Saud University

Riyadh, 11543, Saudi Arabia

mathkour@ksu.edu.sa

binmathkour@yahoo.com

Abstract- The performance of several Database Management Systems (DBMSs) and

Data Stream Management Systems (DSMSs) queries is dominated by the cost of the

sorting algorithm. Sorting is an integral component of most database management

systems. Stable sorting algorithms play an important role in DBMS queries since such

operations requires stable sorting outputs. In this paper, we present a new stable sorting

algorithm for internal sorting that scans an unsorted input array of length n and arranges

it into m sorted sub-arrays. By using the m-way merge algorithm, the sorted m sub-

arrays will be merged into the final output sorted array. The proposed algorithm keeps

the stability of the keys intact. The scanning process requires linear time complexity

(O(n)) in the best case, and O(n log m) in the worst case, and the m-way merge process

requires O (n log m) time complexity. The proposed algorithm has a time complexity of

O (n log m) element comparisons. The performed experimental results have shown that

the proposed algorithm outperforms other stable sorting algorithms that are designed for

join-based queries.

Key Words- Sorting, Stable sorting, Auxiliary storage sorting, Merging.

1. INTRODUCTION

A stable sort is a sorting algorithm which when applied to records with same key

values, they retain their order. In other words, for two records with the same key value,

the outcome of the sorting algorithm will have the records in the same order, although

their positions relative to other records may change [1, 2, 3]. Stability of a sorting

algorithm is a property of the algorithm, not of the comparison mechanism [4, 5, 6, 7].

For instance, quick Sorting algorithm is not stable while Merge Sort algorithm is stable.

Sorting is an integral component of most database management systems

(DBMSs) [8, 2, 9]. Sorting can be both computation-intensive as well as memory

intensive [10, 7, 11, 12]. The performance of DBMS queries is often dominated by the

cost of the sorting algorithm. Most DBMS queries require sorting with stable results [4,

10, 13].

External memory sorting algorithms reorganize large datasets. They typically

perform two phases [4, 14, 15, 16]. The first phase produces a set of ordered sub-files,

while the second phase processes these sub-files to produce a totally ordered output data

file. A popular and important class of the external memory sorting algorithms is the

Merge-Based Sorting algorithm, where input data is partitioned into data chunks of

approximately equal size, sorts these data chunks in main memory and writes the “runs”

H. I. Mathkour

209

to disk. The second phase merges the runs in main memory and writes the sorted output

to the disk. Our proposed algorithm is inspired by the Merge-Based Sorting algorithm.

In order to sort n elements placed in memory array A, the proposed algorithm divides

the n elements of A into m ordered sub-arrays, each with length l; l= n/m. Initially, all

sub-arrays are empty, then elements of array A are scanned and inserted into the ordered

sub-arrays based on the fullness of sub-arrays, and whether the inserted element is

greater than the last element of the sub-arrays or not. If all sub-arrays do not satisfy the

insertion criteria, the scanned element is inserted in place into a temporary sub-array,

temp, with length l. If the temporary sub-array is full, all sub-arrays and sub-array temp

are merged. The merged elements are placed into the sub-arrays by fully filling them in

order. The process continues with the elements left in array A. After scanning all

elements of A, the produced m sub-arrays are merged to form the final sorted list.

External memory sorting performance is often limited by I/O performance [17,

13, 18]. Disk I/O bandwidth is significantly lower than main memory bandwidth.

Therefore, it is important to minimize the amount of data written to and read from disks.

Large files will not fit in RAM so we must sort the data in at least two passes. Each pass

reads and writes to the disk. CPU-based sorting algorithms incur significant cache

misses on data sets that do not fit in the data caches [19, 18]. Therefore, it is not

efficient to sort partitions comparable to the size of main memory [20, 16, 21]. These

results in a tradeoff between disk I/O performance and CPU computation time spent in

sorting the partitions. For example, in merge-based external sorting algorithms, the time

spent in Phase 1 can be reduced by choosing run sizes comparable to the CPU cache

sizes. However, this choice increases the time spent in Phase 2 to merge a large number

of small runs.

In this paper, a new stable sorting algorithm that reduces the number of

comparisons, element moves, and required auxiliary storage will be presented. Our

algorithm operates when used as an internal sorter with an average m log m element

comparisons, m log m element moves, and exactly n auxiliary storage, where n is the

size of the input array to be sorted, and m is the average size of sub-arrays. No auxiliary

arithmetic operations with indices will be needed. The proposed algorithm has been

tested in extensive performance studies. Experimental results have shown that when the

proposed algorithm is adapted to sort externally, it accelerates the computation of equi-

join and non-equi-join queries in databases, and numerical statistic queries on data

streams. The benchmarks used in the performance studies are databases consisting of up

to one million values.

In the following sections, the proposed algorithm, and the computational

requirement analysis will be presented in details. The proposed algorithm and the proof

of its stability are presented in section 2, and the m -way-merge algorithm is discussed

in section 3. The analysis of time complexity and the analysis of the external version of

the proposed algorithm are discussed in section 4. Experimental results are presented in

section 5. Section 6 concludes the paper.

A New Sorting Algorithm for Accelerating Join-Based Queries

210

2. THE PROPOSED STABLE SORTING ALGORITHM

There are some issues that have to be considered to guarantee stability. First, the

input array has to be scanned in sequential order from element a1 to element an. In order

to determine where to place a specific element in a segment, the element should be

placed in the first segment that meets the condition that this element is greater than or

equal to the last element in the sub-array. Also, some issues have to be considered in

merging. The m-way-merge operation that produces the output list, should select values

from segments �1, �2, …, �m in preference according to the segment order. This will

be discussed further in the following section.

The main idea of the proposed algorithm is to divide the elements ai, i=1,…, n of

the input array A with length n into some disjoint segments σ0, σ1, . . . , σm, of equal

lengths l; l= n/m. All elements in segments σi’s, i=1,…, m, are sorted according to key

k. The algorithm starts with empty segments σ0, σ1, . . . , σm , i.e., for each segment σi ,

i=1,…, m, the pointer to its last element lasti=0. ai is compared to the last element of the

not full segments σj, j=1,…, m. ai should fall in one of the following two cases:

• ai ≥ σj (lastj), where j=1,…, m:

 ai is appended to σj.

• ai < σj (lastj) for all j with lastj≠l:

insert ai in σtemp.

If the temporary segment σtemp is full, then the m segments are m-way-merged,

the 2-way-merged with the temporary segment σtemp. Assume the number of sorted

elements is L. The L elements are divided orderly on the first S segments; S= ; such

that the first S-1 segments are full. The first S-1 segments will not be included in the

subsequent inserts. The algorithm will consider only those buffers from S to m.

In the merging process, we should consider the segments order. When two

segments and , k1 <k2 are merged and if there exists two elements in and

 in , such that , then in the merged segment, is placed before .

The final sorted array is obtained by using an m-way merging algorithm. The new

proposed algorithm is given below.

Algorithm Stable-Sorting
{

 // The first part of the proposed algorithm is the stable formation of segments. An additional m

sub-arrays σj, and lastj =0, j=1,…, m are required. //

 i=1; // i is set to the first element of the input array//

 b=1; // b is the starting buffer to append items to//

 do while (i ≤ n)

 {

 STEP1: Read element ai from the input array;

 STEP2:

 J=b; append =0;

 do until (append =1 or j>m)

 {if ai ≥ σj (lastj) and lastj≠l // subarray σj is not full, and ai ≥ last-element in σj;

 then { lastj +=1; σj (lastj)= ai ; //append ai to σj;

 append = 1;}

H. I. Mathkour

211

 else j++;

 }

 if (append = 1)

 then { append = 0; i++ ; goto STEP1;};

else {insert ai in its right position in σtemp;lasttemp +1; i++ ; // all subarrays σj are

not suitable for insertion (either full or ai < last-element in σj);

if lasttemp > l then

 {(m-b+1)-way-merge segments σj’s, j=b,…, m;

 2-way-merge the results with segment σtemp;

L is the total number of elements in the merged buffers;

Do while L>l

 {Fill buffer b with l items;

 L=L-l

 b=b+1;}

Fill buffer b with L items;

goto STEP1;}

 }

m-way-merge segments σj’s, i=1,…, m into final output array;

}

The following lemma states that the Stable-Sorting algorithm is stable.

Lemma: Let A be an array with n elements. The Stable Sort algorithm guarantees that

the resulted sorted array is stable.

Following the steps of the Stable Sort algorithm, the proof of the above lemma is

obvious.

3. THE MERGING

In this section, the m -way-merge algorithm is going to be discussed. 2-way-

merge is discussed first to show complexity measures and stability issues of the

algorithm. The discussion is then generalized to the proposed more general case of m-

way-merge.

Merging is the process whereby two sorted lists of elements are combined to

create a single sorted list. Originally, most sorting was done on large database systems

using a technique known as merging. Merging is used because it easily allows a

compromise between expensive internal Random Access Memory (RAM) and external

magnetic mediums where the cost of RAM is an important factor. Originally, merging is

an external method for combining two or more sorted lists to create a single sorted list

on an external medium.

The most natural way to merge two lists A with n1 elements and B with n2

elements of presorted data values is to compare the values at the lowest (smallest)

locations in both lists and then output the smaller of the two. The next two smallest

values are compared in a similar manner and the smaller value output. This process is

repeated until one of the lists is exhausted. Merging in this way requires n1+ n2-1

comparisons and n1+n2 data moves to create a sorted list of n1+n2 elements. The order in

which each value in the A and B list is selected for output to the C list is labeled by their

subscript in the second listing of A and B. Merging in this manner is easily made stable.

A New Sorting Algorithm for Accelerating Join-Based Queries

212

In addition, this lower limit is guaranteed regardless of the nature of the input

permutation.

 A merge algorithm is stable if it always leaves sequences of equal data values in

the same order at the end of merging.

 Example: Let A and B be two sorted lists with the values given in Figure 1.a.

The 2-way merge algorithm merges lists A and B into list C as given in Figure 1.b.

 A B C

1 1 1 2 1 from A1 1

2 2 2 7 2 from B1 2

3 6 3 7 3 from A2 2

4 11 4 9 4 from A3 6

5 15 5 11 5 from B2 7

6 17 6 15 6 from B3 7

7 17 7 17 7 from B4 9

 8 from A4 11

 9 from B5 11

 10 from A5 15

 11 from B6 15

 12 from A6 17

 13 from A7 17

 14 from B7 17

 Figure 1.a Figure 1.b

Figure 1. The 2-way merging of A and B

If the merge algorithm is merging two lists such that it keeps the indices of a sequence

of equal values from a given list in sorted order, i.e. they are kept in the same order as

they were before the merge as illustrated in the example 1, the merge algorithm is said

to be stable. Otherwise, the algorithm is said to be unstable.

Stability is defined such that values from A are always given preference

whenever a tie occurs between values in A and B, and that the indices of equal set of

values are kept in sorted order at the end of the merge operation. The proposed m-way-

merge operation can be implemented as a series of 2-way merge operations with

preserving stability requirements, or can be merge m lists in the same time. The 2-way-

merge operation can be generalized for m sorted lists, where m is some positive integer

> 2. For keeping track of the next smallest value in each list during the merge operation,

m pointers will be needed. The number of comparisons needed for merging m sorted

lists, each consisting of l data items is O(n log2(m)), where n = ml.

4. PERFORMANCE ANALYSIS

3.1. Time Complexity

 Scanning the elements of the input array of n elements and divide it into m

sorted sub-arrays is done in linear time, except when the temporary array reaches its

maximum length. The best case, when the temporary array is not reaching its maximum

H. I. Mathkour

213

length, needs O(n) comparison and O(n) moves. The maximum time required for doing

the sorting process, and keeping the stability required, needs O(n log m) comparison and

O(n) moves. In the worst case, each of the empty buffers will hold only one element,

and the algorithm may have to insert elements to the temporary array until it gets full.

The process is repeated until all elements are inserted. Below, we prove that the Stable-

Sorting algorithm has a time complexity of O (n log m), where m could be much smaller

than n.

Assume n=m
r
, for some integer r > 0, if r=1, which means number of buffers m

equals to number of records n, the proposed approach could have, in the worst case, O(n

log n) time complexity. If the number of buffers is decreased, by increasing r, we may

get less cost but to a certain limit. If ; ,) the proposed approach

could have O(n log n) cost. From fig. 2, 3, and 4, we conclude that the best value for r is

4.

Best Case:

<= n+ n log(m)+l log(l) � O(n log (m))

Worst Case:

1 : m getting m elements into m buffers

: l log(l) getting l elements (sorted) into temp buffer

: m log(m) m-way merge of m buffers

: (m+l) merge with temp buffer

: (m+ l) placing l elements in buffer 1 and m elements in buffer 2

: Total = m +l log(l) + m log(m) + 2 (m+l)

In general in iteration i

i : m-i getting m-i into (m-i) buffers

: l log(l) getting l elements (sorted) into temp buffer

: <(im-i)log(m) (m-i)-way merge of m-i buffers < im log (m-i)

: (im-i+ l) merge with temp buffer

: (im-i+ l) placing l elements in buffer m-i and im-x(i) elements in buffer i

: Total = (m-i) +l log(l) + (im- i)/2) log(m) + 2(im- i+l)

The process will be repeated m times

Total cost or

Total cost

In case that n=m

3
, then l=m

2

Total cost

Total cost is O(n log m)

if n=m
4
, l=m

3

Total cost

Total cost is O(n log m)

In general, if n=m
r
, l=m

r-1

Total cost

A New Sorting Algorithm for Accelerating Join-Based Queries

214

If r=1; m=n, the proposed approach could have O(n log n) cost. If we decrease the

number of buffers, by increasing r, we may get less cost but to a certain limit. Part of the

total cost equation, (), will increase the total cost. If ;

,) the proposed approach could have O(n log n) cost. From Figures 2, 3,

and 4, the best value of r is 4.

3.2. Space Complexity

 There is extra auxiliary storage equal to an array of the same size as the input

array. Clever implementation of the proposed Stable-Sorting algorithm can decrease the

required auxiliary storage. There are no indices or any other hidden data structures

required for the execution of the algorithm. Auxiliary storage that is required for the

proposed algorithm is O(n).

3.3. External Sorting Version of The Proposed Algorithm

In the proposed implementation of our algorithm, the input file is sorted in two

passes. Each pass reads and writes to the disk. The proposed algorithm is adapted to

perform external sorting using run sizes comparable to the available RAM size to

minimize the time required for the second part of the algorithm which is the final

merging operation. This is done by assuming the input array will be sorted in a file on

H. I. Mathkour

215

the hard disk called f. The file f is much larger than the available space in main memory.

For an available main memory of g bytes, we divide the space available in the main

memory into two partitions, g1 and g2; g=g1+g2. The first g1 bytes of the file f are

copied into the first partition. The other g2 bytes of the main memory are divided into

m+1 blocks each has length l; g2=(m+1)l and g1=ml. We perform the proposed

algorithm on the portion of f in the main memory. The g1 bytes of the sorted output will

be stored back in file f in place of its first g1 bytes. Then we repeat the same procedure

on the next g1 bytes from file f until the whole file is exhausted. The second part is to m-

way-merge, the sorted g1 chunks of file f. The merge procedure is performed externally.

5. EXPERIMENTAL RESULTS

Performance study is being carried on our proposed algorithm as an internal

sorting algorithm and its performance is compared to other well known internal sorting

algorithms. These sorting algorithms are Merge-sort, K-way merge sort and quick sort

algorithms.

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

number of keys

ex
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Mergsort

proposed algorithm m=4

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

number of keys

ex
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

k-way merge sort

proposed algorithm m=8

(a) (b)

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

ex
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d

s

number of keys

Quick sort

proposed algorithm (m=4)

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

e
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

number of keys

Mergsort
k-way merge sort
Quick sort
proposed m=16
proposed m=8
proposed m=4

(c) (d)

Figure 5. The proposed algorithm vs : (a) Mergesort, (b) K-way Mergesort, and (c) Quicksort

(d) A comparison of various sorting algorithms

A New Sorting Algorithm for Accelerating Join-Based Queries

216

The performance improvement obtained by using our proposed algorithm with

m=4, against mergesort (Figure 5.a) is gaining on the average a 45% speedup over

mergesort optimized CPU implementation. With m=8, our proposed algorithm on

average is 40% faster than k-way mergesort optimized CPU implementation (Figure

5.b).

The performance improvement obtained by using our proposed algorithm with

m=4, against Quick sort (Figure 5.c) is a gaining of 35% on the average over Quick sort

optimized CPU implementation, and finally, the performance improvement obtained

using our proposed algorithm against Quick sort (Figure 5.d) is gaining on the average a

20% speedup over Quick sort optimized CPU implementation. Figure 5.d depicts the

running times of sorting algorithms in milliseconds for a number of keys to be sorted

ranging from 1000 to 8000 keys each key is 20 characters long.

6. CONCLUSIONS

In this paper, a new sorting algorithm was presented. This algorithm is stable

sorting algorithm with O(n log m), comparisons where m is much smaller than n, and

O(n) moves and O(n) auxiliary storage. Comparison of the new proposed algorithm and

some well-known algorithms has proven that the new algorithm outperforms the other

algorithms. Further, there is no auxiliary arithmetic operations with indices required.

Besides, this algorithm was shown to be of practical interest, in join-based queries. We

have improved the performance of join operations by applying our fast sorting

algorithm and compared its performance against other optimized nested join algorithms.

Our algorithm also has low bandwidth requirements

7. REFERENCES

1. Y. Azar, A. Broder, A. Karlin, and E. Upfal, Balanced allocations, in Proceedings of

26th ACM Symposium on the Theory of Computing, 593-602, 1994,.

2. R.A. Krishna, A. Das, J. Gehrke, F. Korn, S. Muthukrishnan, and D. Shrivastava,

Efficient approximation of correlated sums on data streams, TKDE, 2003.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

2nd edition MIT Press, Cambridge, MA, 2001.

4. D. Knuth, Sorting and Searching, Volume 3 of the Art of Computer Programming,

Addison-Wesley Publishing Company, Reading, MA, 1973.

5. A. Broder and M. Mitzenmacher, Using multiple hash functions to improve IP

lookups, in Proceedings of IEEE INFOCOM, 2001.

6. N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi, Hardware acceleration in

commercial databases: A case study of spatial operations, Proceedings of the Thirtieth

international conference on Very large data bases, 30, 1021-1032, 2004.

7. S. Manegold, P.A. Boncz, and M.L. Kersten, What happens during a join? Dissecting

CPU and memory optimization effects, in Proceedings of 26th International Conference

on Very Large Data Bases, 26, 339–350, 2000.

8. A. LaMarca and R. E. Ladner, The influence of caches on the performance of heaps,

ACM Journal of Experimental Algorithmics, 1, 4-es, 1996.

H. I. Mathkour

217

9. A. Das, J. Gehrke, and M. Riedewald, Approximate join processing over data

streams, in Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, ACM Press, 40-51, 2003.

10. J.V. Lunteren, Searching very large routing tables in wide embedded memory, in

Proceedings of IEEE Globecom, November 2001.

11. J.L. Bentley and R. Sedgewick, Fast algorithms for sorting and searching strings,

ACM-SIAM SODA ’97, 360–369, 1997.

12. G. Franceschini and V. Geffert. An In-Place Sorting with O(n log n) Comparisons

and O(n) Moves, IEEE FOCS ’03, 242–250, 2003.

13. L. Arge, P. Ferragina, R. Grossi, and J.S. Vitter, On sorting strings in external

memory, ACM STOC ’97, 540–548, 1997.

14. R.C. Agarwal, A super scalar sort algorithm for RISC processors, SIGMOD Record

(ACM Special Interest Group on Management of Data), 25(2), 240–246, June 1996.

15. A. Arasu and G. S. Manku, Approximate counts and quantiles over sliding

windows, PODS, 2004.

16. M.A. Bender, E.D. Demaine, and M. Farach-Colton, Cache-oblivious B-trees, IEEE

FOCS ’00, 399–409, 2000.

17. P.A. Boncz, S. Manegold, and M.L. Kersten, Database architecture optimized for

the new bottleneck: Memory access, in Proceedings of the Twenty-fifth International

Conference on Very Large Databases, 25, 54–65, 1999.

18. G. Franceschini, Proximity mergesort: Optimal in-place sorting in the

cacheoblivious model, ACM-SIAM SODA ’04, 284–292, 2004.

19. A. Andersson, T. Hagerup, J. H°astad, and O. Petersson, Tight bounds for searching

a sorted array of strings, SIAM Journal on Computing, 30(5), 1552–1578, 2001.

20. A. LaMarca and R. Ladner, The influence of caches on the performance of sorting,

in Proc. of the ACM/SIAM SODA, 370–379, 1997.

21. G. Franceschini, Sorting stably, in-place, with O(n log n) comparisons and O(n)

moves, STACS ’05, 2005.

