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1. INTRODUCTION 

 

For general strongly nonlinear oscillator with slowly varying parameter, many 

perturbations are difficult to be applied strictly. The problem has caused many 

researcher’s attention and been researched widely in recent years. This paper is to study 

the following strongly nonlinear oscillator of the form 
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where tt ε=~  is the slow scale. For some special cases of k  and g , we can obtain Van 

del Pol oscillator, Rayleigh equation and pendulum equation. We assume that functions 

k  and g  are arbitrary nonlinear functions and Eq.(1) has periodic solutions when 0=ε . 

For the case of quadratic and cubic nonlinear function )
~
,( txg , Kuzmak-Luke multiple 

scales method [1-4] can be applied efficiently, and the asymptotic solutions expressed 

by Jacobian elliptic functions can also be obtained [4]. For general nonlinear functions 

)
~
,( txg , Taylor series expansions are often used to approximate them but they are 

effective only for small amplitudes. Many efforts have been done to overcome the 

difficulty, such as Fourier series [3], equivalent linearization combined averaging 

method [5]. Approximate potential method was first proposed by Li in Ref.[6] to deal 

with a generalized pendulum equation resulted from the free electron laser (FEL). In 

Ref.[6] the potential for the nonlinear oscillator is expressed by a polynomial of degree 

three such that the leading approximation is expressible in terms of elliptic functions. In 

Ref.[7] Cai first proposed equivalent nonlinearization method to overcome the difficulty 

of some kinds of nonlinearity. This method use quadratic or cubic nonlinear polynomial 

to approximate nonlinear function )
~
,( txg , and the least-squares fit method is used to 

decide the coefficients. Bosely presented a technique that uses numerical solutions to 
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verify the order of the accuracy of an asymptotic expansion for several types of 

problems [8].  

In this paper, we first obtain three approximate cubic nonlinear oscillators 

respectively by Taylor series expansions method, approximate potential method and 

equivalent nonlinearization method to approximate a generalized Van del Pol oscillator. 

Secondly, the leading order approximate solutions of these three approximate cubic 

nonlinear oscillators are obtained by the K-L multiple scales method. The numerical 

order verification is applied to verify that the asymptotic solutions are valid when the 

parameter ε  is small for the three approximate cubic nonlinear oscillators but not 

uniformly valid for the original equation. The reason is that these three approximate 

cubic nonlinear oscillators have errors with the original equation. Finally, error analysis 

of the leading order approximate solutions shows that the errors are about one-tenth of 

the value of the small parameter ε . Error analysis also shows that Taylor series 

expansions method is better than approximate potential method and equivalent 

nonlinearization method when the amplitude is small, while equivalent nonlinearization 

method is better than Taylor series expansions method and approximate potential 

method when the amplitude is large. It also shows that Taylor series expansions method 

has large error for relatively large oscillations. 

 

2. ASYMPTOTIC SOLUTION OF STRONGLY NONLINEAR OSCILLATOR 

 

Van der Pol obtained the following equation 
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which is negative damp for small oscillation, and positive damp for large oscillation. 
A modified Van del Pol oscillator has been recently proposed to describe a self-excited 

body sliding on a periodic potential [9]，which is described by the following equation 
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Consider a generalized strongly nonlinear oscillator with slowly varying 

parameter in the form 
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where tt ε=~ ( 10 <<< ε ) is the slow scale. 

Eq.(4) can transform to 
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where )
~
()

~
()

~
(1 tmtdtd ′−= . 

In order to obtain the asymptotic solution of Eq.(5) by using K-L multiple scales 

method, we obtain three approximate cubic nonlinear oscillators respectively by Taylor 

series expansions method, approximate potential method and equivalent 

nonlinearization method. Next, we give a brief introduction to the three methods. 

 

2.1. Taylor series expansions method 
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For small oscillator, 
3

6

1
sin xxx −≈ , so Eq.(5) turns into 
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2.2. Approximate potential method 

The fast scale +t  , following Kuzmak [1], is defined as )
~
(t

dt

dt
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+

 with an 

unknown )
~
(tω  to be determined by the periodicity of the solution of Eq.(5). Suppose 

that the solution of Eq. (5) can be developed in the multiple scales form 
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Substituting (7) into (5) and equating powers of ε  gives the leading order approximate 
equation 
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We obtain the energy integral  
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where 
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is the potential（For simplity, we set 0)0( =V ）and )
~
(0 tE  is the slowly varying energy 

of the system. According to the character of the potential function, we may fit a 

polynomial of degree four to the potential (10) such that the periodic solution is 

expressible in terms of elliptic functions, which will be discussed in detail later. 

 

2.3. Equivalent nonlinearization method 

According to the character of x
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The coefficients are chosen such that 0
1
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c

F
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F
, and 1x  and 2x  can be 

chosen around the center rx . 

In the following, we choose ttm ε+=10)
~
( , 1)

~
( ≡tc , ttd ε+=10)

~
( , 

tta ε+= 5)
~
(  and 

2
)5()

~
( ttb ε+=  as an example to consider. 

Following Taylor series expansions method, the approximate equation of Eq.(5) 

becomes 
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According to approximate potential method [6], the potential V  is “U--Shaped”, so 

Eq.(11) has periodic solutions around 0=rx . Denoting 
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where the coefficients are chosen such that 
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Substituting V  for V  in Eq.(9), we can obtain the approximate equation of Eq.(5) 
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According to equivalent nonlinearization method [7], we consider the range of 

amplitude of ]
3

2
,
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−∈x  because Eq.(13) has periodic solutions around 0=rx , then 
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So the equivalent nonlinearization equation of Eq.(5) is 
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We now apply K-L multiple scales method to obtain the leading order approximate 

solutions of these three approximate cubic nonlinear oscillators. Firstly, we introduce 

the application of K-L multiple scales method in cubic nonlinear oscillators. For system 

(1), suppose that the solution can be developed in the form of asymptotic expression (7), 

where )
~
(tω  will be determined by the periodicity of the solution of Eq.(5). If the 

periodic is normalized to be 1, we have 
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where rx  is the resonance center. We denote )
~
,(0 tfx ϕ=  which is the leading order 

approximate solution, and 0ϕϕ += +t . Constant c  and 0ϕ  can be determined by the 

initial values of the system. 

When 
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a leading order approximate equation 
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Its energy integral is 
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is the potential, and )
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(0 tE  is the slowly varying energy of the system. When 0)

~
( >ta  

and 0)
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( <tb （resonance center is at 0=rx ）, we can obtain 0x  in terms of elliptic 

function of 
+t  by integrating (17) 
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where ( )K v  is the complete elliptic integral of the first kind associated with the 

modulus v  and  
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The modulus v  is determined by equation 
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and )(vE  is the complete elliptic integral of the second kind associated with the 

modulus v . More details of deduce, readers can refer to Ref.[10]. 

We assume the initial conditions are 

(0) 1x = , 0)0( =x&                                    (23) 

For Eqs.(11) and (23)、(13) and (23)、(14) and (23), using K-L multiple scales 

method, we obtain the following asymptotic solutions expressed by Jacobian elliptic 

functions 
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Comparisons of the three leading order approximate solutions and numerical 

solutions of Eqs.(5) and (23) are shown respectively in Fig.1- Fig.3. 
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Fig. 1 Comparison of asymptotic solution (24)            Fig. 2 Comparison of asymptotic solution (25) 

and numerical solution                                                  and numerical solution 

___ numerical solution    ．．．．asymptotic solution  
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Fig. 3 Comparison of asymptotic solution (26) and numerical solution  

  ____ numerical solution  ．．．．asymptotic solution 

 

So the accuracies of the three leading order approximate solutions are quite 

satisfactory. 

 

3. NUMERICAL ORDER VERIFICATION OF APPROXIMATE SOLUTION 

  

Following Bosley’s technique of numerical order verification [8], we assume the 

solution of Eq.(1) is 
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The error of the asymptotic expansion is 
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where K  is a constant. Taking the logarithm of both sides of equation (28) yields 

εlog)1(log)log()log( ++== NKEError N                              (29) 

which means the value of )log( NE  as a function of εlog  should be linear with slope 

1+N . Therefore, when we graph )log( NE  versus εlog  for different values of ε , these 
points should be nearly on a line and the linear equation that interpolates these points 

using a linear least-squares fit should have slope 1+N . 
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In order to give a better overall estimation of difference between the exact (or 

numerical) and asymptotic solutions, instead of Ref.[8] with a fixed time 0tt = , an 

average error is introduced in Ref.[11] 
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where ),2,1( mitt i L==  are fixed points in the concerned domain of time t . To verify 

the order of asymptotic expansions(24)-(26), we first find the numerical solutions of 

Eq.(11), Eq.(13), Eq.(14) and (23) with )10,2,1(02.0 L== iiti  when ]1.0,001.0[∈ε  by a 

step size 0.003. Next, we evaluate the asymptotic expansions (24)-(26) at the same 

values of ε  and it . The exact solution ),( εtxexact  in Eq.(28) is replaced by the 

numerical solutions of Eq.(11), Eq.(13) and Eq.(14) respectively. Fig.4-Fig.6 plot the 

values of the errors at these 34 points, and these points are nearly on a line. The least-

square fit of the data is used to determine the slopes 1.00537, 1.00777, and 1.00736, 

which are in good agreement with the theoretical slope )0(11 ==+ NN .  
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0log 2.03199 1.00537 logF ε= − +                     
0log 2.02946 1.00777 logF ε= − +  

Fig. 4 Numerical verification of the solution           Fig. 5 Numerical verification of the solution   
(24) with ε  starting from 0.001 to 0.1                   (25) with ε  starting from 0.001 to 0.1 
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0log 2.03118 1.00736logF ε= − +               

Fig. 6 Numerical verification of the solution (26) with ε  starting from 0.001 to 0.1          
 

Therefore, we can conclude that K-L multiple scales method is valid when the 

parameter is small for the three approximate cubic nonlinear oscillators. If the exact 

solution ),( εtxexact  in Eq.(28) is replaced by the numerical solution of Eq.(5), the result 

is not asymptotic valid. For example, we consider ]01.0,001.0[∈ε . The lines obtained 

by Taylor series expansions method and equivalent nonlinearization method are 
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0log 4.09279 0.510403logF ε= − +  and 
0log 4.63895 0.337526 logF ε= − + , respectively. 

And the result obtained by approximate potential method is not a line. The reason is that 

the three approximate cubic nonlinear oscillators have errors with Eq.(5), and the errors 

bring larger error between the asymptotic solutions with the numerical solution of 

Eq.(5). 

 

4. ANALYSIS OF ERROR 

 

Now we will show a numerical comparison of these three methods for parameter 

ε  by using technique [8, 11]. Fig.7 plots 
0

F  versus ε  of the asymptotic Eqs.(24), (25) 
and (26) obtained by the three methods, where )10,2,1(02.0 L== iiti , and ε  starts from 
0.001 and ends at 0.1 by a step size 0.003. The exact solution ),( εtxexact  in Eq.(28) is 

replaced by the numerical solution of Eq.(5), and the amplitude is 1)0( =x . 
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Fig. 7 The relation between the average error 

0F  and parameter ε ( 1)0( =x )    

a: Taylor expansions method  b: approximate potential method  c: equivalent nonlinearization method 

 

Note that the average error 
0F  increases lineary as parameter ε  increases, and the 

errors are about one-tenth of the small parameter ε . Obviously, approximate potential 
method has higher accuracy at this time. We can compare further the accuracy of the 

three methods for different amplitudes.  
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Fig. 8 The relation between the average error           Fig.9 The relation between the average error  

0F  and parameter ε ( 5.0)0( =x )             
0F  and parameter ε ( 2)0( =x ) 

a: Taylor expansions method  b: approximate potential method  c: equivalent nonlinearization method 
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5. CONCLUSIONS 

    
K-L multiple scales method can be applied validly to strongly nonlinear oscillators 

with slowly varying parameter. For quadratic nonlinear oscillators, the asymptotic 
solutions expressed by Jacobian elliptic functions can be obtained. The error analysis 

also shows that the asymptotic solutions are still valid for 1.0=ε , which is not very 

small. 
Taylor series expansions method is better when the amplitude is small, and 

equivalent nonlinearization method is better when the amplitude is large. It also shows 

that Taylor series expansions method has large error for large oscillations. 
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