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Abstract-This paper presents a sensitivity investigation of the expected busy period 

for a controllable M/G/1 queueing system by means of a factorial design statistical 

analysis. We studies the effect of four important factors (parameters) that influence the 

expected busy period of an M/G/1 system, in which the server operates <p,N>-policy 

in his idle period. A 2
4
 factorial experimental design is used to evaluate the sensitivity 

analysis of parameters on the expected busy period of a controllable M/G/1 queue. 

Based on the analysis of variance, we find the main effect and interaction effect of the 

significant factors on the system characteristics. 
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1. INTRODUCTION 

In this paper, we conduct an experiment study for the sensitivity analysis of 

parameter patterns on the expected busy period for a controllable M/G/1 queueing 

system. The arrival of customers follows a Poisson process with parameter λ . 

Arriving customers at the system form a single waiting line and are served in the order 

of their arrivals. There is a single server that provides his service for the arriving 

customers and operates <p,N> policy in his idle period. The concept of a 

<p,N>-policy in the controllable queueing system was first introduced by Feinberg 

and Kim [1]. An operating policy is called the <p,N>-policy if it prescribes the 

following conditions: (i) turn the server off when the system is empty, (ii) turn the 

server on if there are N (N 1≥ ) or more customers are present, (iii) if the server is off 

and the number of customers in the system reaches N, turn the server on with 

probability p and leave the server off with probability (1-p), and (iv) do not turn the 

server at other epochs.  

The related statistical studies of queueing problems mostly concentrated on 

statistical inferences of parameters or system characteristics. An overview of literature 

on the statistical analysis of several queueing systems was provided by Dshalalow [2]. 

Rodrigues and Leite [3] applied Bayesian analysis to construct confidence intervals of 

an M/M/1 queue. Huang and Brill [4] built the minimum variance unbiased estimator 

and the maximum likelihood estimator of a collection of n independent M/G/c/c 

queues. Wang et al. [5] presented the maximum likelihood estimates and confidence 

intervals of an M/M/R/N queue with balking and heterogeneous servers. Chu and Ke 

[6] examined the statistical behavior of the mean response time for the ordinary 

M/G/1 queueing system using bootstrapping simulation. Recently, Ke and Chu [7] and 
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Chu and Ke [8] gave a simulated analysis and comparative analysis of an ordinary 

G/G/1 queueing system based on a non-parametric statistical knowledge. Existing 

research works, including those mentioned above, most focused on the estimations or 

hypothesis testing of system parameters and other system characteristics. So far very 

few authors have studied the sensitivity investigations of parameters on the system 

characteristics of a queueing system using statistical analysis. As for the sensitivity 

analysis of queueing problems, most researchers examined the effect of changes in the 

specific values of the system parameters on the system characteristics or other 

objective functions (see Ke and Wang [9], Wang et al. [10] and etc.). They rarely dealt 

with the interaction effect among parameter distributions on the system characteristics 

or other objective functions. Therefore, motivated by the above finding this paper is to 

develop a factorial design statistical analysis to investigate the main effect and 

interaction effect of parameters on the expected busy period for a controllable M/G/1 

queueing system. A more detailed treatment of factorial design can be found in 

specific literature [11].  

 This remainder of this paper is organized as follows. In section 2, some analytic 

results related to a controllable M/G/1 queueing system is briefly reviewed. In section 

3, we describe the design of experiment used evaluate the sensitivity of the expected 

busy period for the controllable queueing system. In Section 4, we report the 

experimental results of our simulation. Finally, some conclusions are presented in 

Section 5. 

 

2. ON M/G/1 SYSTEM WITH <p,N> POLICY 

Let U and V represent interarrival time and service time for the test customer of 

an M/G/1 queueing system with <p,N> policy, where U follows an exponential 

distribution with mean λ/1  and is independent of general distribution V. By similar 

arguments of Feinberg and Kim [1], we easily obtain the expected busy period of the 

controllable system given by   

][1

][)1(

VE

VEpN

λ
β

−

−+
= ,                         (1) 

where ][VE  represents mean service time.  

Estimating the expected busy period β  

Assume that nUUU  , , , 21 L  is a random sample from U with distribution 

function )(⋅F  and let nVVV  , , , 21 L  is a random sample from V. We use ),( ii VU  to 

represent interarrival time and service time for the ith customer of the controllable 

M/G/1 queueing system. Let U  be the sample mean of U1, U2, …, Un; and V  the 

sample mean of V1, V2, …, Vn is a random sample of V. According to Strong Law of 

Large Numbers (see Roussas [12], p.196), U  and V  are strong consistent sample 

estimators of λ/1 , E[U], respectively. From statistics knowledge (Roussas [12]), a 

good estimator of β  is given by 

VU

VUpN

−

−+
=

)1(
β̂ .                         (2) 

To study the main effect and interaction effect of parameter distributions on the 
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expected busy period, we perform analysis of variance on the expected busy period by 

means of the 2
4
 factorial design. 

  
3. 2

4 
FACTORIAL DESIGN MODEL 

To explore the effect of arrival rate (λ), control probability (p), control threshold 

(N) and queueing types on the expected busy period of a controllable M/G/1 queueing 

system with <p, N>-policy, we use a 2×2×2×2 factorial experimental design which 

results in a total of 16 treatments. The 2
4
 factorial design model is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
ijklr i j k l ij ik il jk jl kl ijk ijl ikl jkl ijkl ijklr
y µ α β γ τ αβ αγ ατ βγ βτ γτ αβγ αβτ αγτ βγτ αβγτ ε= + + + + + + + + + + + + + + + +  

for i , j, k, l = 1, 2 and r = 1, 2, 3, where ),0(~ 2
..

σε N
dii

ijklr .               (3)  

The selected levels for four factors are as follows: arrival rate (λ=0.2 and 0.8), 

control probability (p=0.2 and 0.8), control threshold (N=5 and 15) and queueing 

types (M/E4/1 queue and M/H4/1 queue), where 0.1][ =VE . We set up levels of 

arrival rate as low intensity (λ=0.2) and high intensity (λ=0.8); levels of control 

probability as low (p=0.2) and high (p=0.8); and levels of control threshold as low 

(N=5) and high (N=15) in order to consider various combinations of parameter 

distributions. For each combination, three replicates of a sample size 100=n  each 

are conducted, where random samples of interarrival times ( nuuu ,...,, 21 ) and service 

times ( nvvv ,...,, 21 ) are drawn from U and V, respectively. That is, we obtain three 

replications of the expected busy period in the system from 100 arrivals and service 

times in various parameter setting. The design experimental worksheet is shown in 

Table 1. They are used to find the significant factors based on the analysis of variance 

(ANOVA) for the expected busy period. Results of ANOVA are obtained at 5% 

significance level. The goal of the above experiment is to evaluate the sensitivity 

analysis of system parameters on the expected busy period. 

Table 1. Experimental worksheet and experimental results 

experimental 

order  
Control 

threshold (N) 

Control 

probability (p) 

Arrival 

rate (λ) 
Type Observation 

1 1 1 -1 1 1.725738 

2 1 -1 1 1 15.441305 

3 1 1 1 1 13.715429 

4 -1 1 1 -1 2.679785 

5 1 1 -1 -1 1.725913 

6 1 -1 -1 -1 1.650349 

7 1 1 1 1 10.521979 

8 -1 -1 1 1 3.161943 

9 -1 1 -1 -1 0.563080 

10 -1 -1 1 -1 4.052290 

11 1 1 -1 -1 1.574526 

12 -1 1 -1 -1 0.591416 

13 1 1 1 -1 19.933934 
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14 -1 1 -1 1 0.581632 

15 -1 -1 -1 1 0.676497 

16 -1 1 -1 1 0.639094 

17 1 -1 1 1 10.695994 

18 -1 1 1 -1 8.389053 

19 -1 1 1 1 3.124714 

20 1 1 -1 1 1.801016 

21 -1 -1 1 -1 5.959114 

22 -1 -1 -1 1 0.635373 

23 -1 -1 -1 -1 0.602029 

24 1 -1 -1 1 1.902770 

25 1 1 1 1 20.036520 

26 1 -1 1 -1 27.261812 

27 1 1 -1 1 1.636637 

28 1 -1 -1 1 1.545616 

29 1 1 -1 -1 1.621868 

30 -1 -1 1 1 2.460842 

31 1 1 1 -1 7.383641 

32 1 -1 1 -1 7.634554 

33 1 1 1 -1 11.482478 

34 -1 -1 -1 1 0.702448 

35 1 -1 1 -1 11.023537 

36 -1 1 -1 -1 0.613063 

37 -1 -1 -1 -1 0.599661 

38 1 -1 -1 1 1.690808 

39 -1 1 1 -1 3.326087 

40 -1 1 -1 1 0.570840 

41 -1 1 1 1 7.512031 

42 1 -1 1 1 8.846204 

43 1 -1 -1 -1 1.728183 

44 -1 -1 1 1 5.154371 

45 1 -1 -1 -1 1.947580 

46 -1 -1 1 -1 11.222003 

47 -1 1 1 1 10.871766 

48 -1 -1 -1 -1 0.739204 

  Remark: 1: high level, -1: low level. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

First, we assume the model (equation (3)) is adequate and the error term 
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normally and independently distributed with constant variance. The test procedure is 

usually summarized in an analysis of variance table, as shown in Tables 2-3. 

In Table 2, it shows that the main effect is significant at 5 percent, and there are 

no interactions between the factors. And then, in Table 3, we get the results that the 

only two factors N and λ have a significantly effect on the expected busy period and 

an interaction between them occurs. The effect of λ and N (i.e., t values) on the 

expected busy period is particularly larger and positive, which imply the high level of  

λ or N has a larger expected busy period. That is, the expected busy period increases 

when λ or N increases. 

Table 2. Analysis of Variance 

Source of 

Variation 

Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Square 

F p-value 

Main effect 1115.64 4 278.91 19.68* <0.001 

2-way 

Interaction 
171.01 6 28.502 2.01 0.093 

3-way 

Interaction 
23.68 4 5.921 0.42 0.795 

4-way 

Interaction 
0.06 1 0.056 0 0.95 

Residual Error 453.46 32 14.171   

Total 1763.85 47    

* Significant at 5 percent  

Table 3. Estimated Effect and Coefficients for Observations 

Term Effect Coef. SE Coef. T p-value 

Constant 5.4158 0.5433 9.97 0  

λ  8.4928 4.2464 0.5433 7.82* <0.001 

p 0.2203 0.1102 0.5433 0.2 0.841 

N 4.5458 2.2729 0.5433 4.18* <0.001 

Type -0.3606 -0.1803 0.5433 -0.33 0.742 

N*p -0.0711 -0.0355 0.5433 -0.07 0.948 

N*λ 3.4594 1.7297 0.5433 3.18* 0.003 

N* Type -0.0901 -0.0451 0.5433 -0.08 0.934 
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p*λ 0.285 0.1425 0.5433 0.26 0.795 

p* Type 1.4316 0.7158 0.5433 1.32 0.197 

λ* Type -0.3732 -0.1866 0.5433 -0.34 0.734 

N*p*λ -0.0724 -0.0362 0.5433 -0.07 0.947 

N*p* Type -0.0284 -0.0142 0.5433 -0.03 0.979 

N*λ* Typel -0.0865 -0.0433 0.5433 -0.08 0.937 

p*λ* Type 1.4001 0.7 0.5433 1.29 0.207 

N*p*λ* Type -0.0682 -0.0341 0.5433 -0.06 0.95 

* Significant at 5 percent  

Next, we check the 2
4
 factorial model to see whether the error term for the 

response (the expected busy period) is adequate or not. The plot of residuals versus 

fitted values, shown in Fig.1, is disturbing since the outward-opening funnel shape 

indicates that the constant variance assumption is not satisfied (i.e., variance is 

non-homogeneous). A normal probability plot and a dot diagram of these residuals are 

displayed in Fig. 2, it shows that the error term is not normal, because the dot diagram 

is not approximate a straight line.  
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Fig. 1. Plot of residuals versus fitted values 
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Fig. 2. Normal probability plot and a dot diagram 

 

Because the error variance may be non-homogeneous (see Fig.1), Thus we 

investigate the possibility of using a variance-stabilizing transformation on the data. 

We try the inverse transformation y*=1/y to improve the homogeneity of the error 

variances. And then, the Fig. 3 reveals no pattern exists and the homogeneity of the 

error variance is satisfied. 4, the p-value is 0.701 by Anderson-Darling test and the dot 

diagram is approximate a straight line. Therefore, the results are displayed the error 

term satisfies the normality assumption under significant level 0.05. A plot of these 

residuals versus order of data collection is shown in Fig. 5. There is no reason to 

suspect any violation of the independence or constant variance assumptions of error 

term. From the above listed, we conclude the inverse transformation is appropriate. 

The assumptions of error term in equation (3) appear to be satisfied for y* and we 

would conclude the test in Tables 4-5 is valid. 
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Fig. 3. Plot of residuals versus fitted values 
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P-Value:   0.701

A-Squared: 0.259

Anderson-Darling Normality Test

N: 48

StDev: 0.0701368

Average: 0.0000000
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Fig. 4. Normal probability plot 
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Fig. 5. Residuals versus the order of the data 

 

In Table 4, it shows that main effect and 2-way interaction are significant at 5 

percent. And then, we find from Table 5 that there is a two-way interaction between 

factors N and λ, and p and λ. One can more convince the results of Table 3 that the 

two factors N and λ have a significantly interaction effect on the expected busy 

period.  

Table 4. Analysis of Variance 

Source of 

Variation 

Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Square 

F p-value 

Main effect 14.6926 4 3.67316 508.39* <0.001 
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2-way 

Interaction 
2.3624 6 0.39373 54.5* <0.001 

3-way 

Interaction 
0.0341 4 0.00851 1.18 0.339 

4-way 

Interaction 
0.0164 1 0.01643 2.27 0.141 

Residual Error 0.2312 32 0.00723   

Total 17.3367 47    

* Significant at 5 percent  

Table 5. Estimated Effect and Coefficients for Observations 

Term Effect Coef. SE Coef. T p-value 

Constant  0.6273 0.01227 51.13* < 0.001 

λ  -0.9396 -0.4698 0.01227 -38.29* < 0.001 

p 0.0404 0.0202 0.01227 1.65 0.109 

N -0.5829 -0.2915 0.01227 -23.76* < 0.001 

Type -0.0068 -0.0034 0.01227 -0.28 0.782 

N*p -0.0341 -0.0171 0.01227 -1.39 0.174 

N*λ 0.4381 0.219 0.01227 17.85* < 0.001 

N* Type 0.0017 0.0009 0.01227 0.07 0.944 

p*λ -0.0505 -0.0253 0.01227 -2.06* 0.048 

p* Type -0.0307 -0.0153 0.01227 -1.25 0.22 

λ* Type 0.0171 0.0086 0.01227 0.7 0.491 

N*p*λ 0.0377 0.0189 0.01227 1.54 0.134 

N*p* Type 0.0124 0.0062 0.01227 0.51 0.616 

N*λ* Type -0.019 -0.0095 0.01227 -0.77 0.445 

p*λ* Type -0.03 -0.015 0.01227 -1.22 0.23 

N*p*λ* Type 0.037 0.0185 0.01227 1.51 0.141 

* Significant at 5 percent  

Based on the above results from the factorial design statistical analysis, we conclude 

that  

� The two-way interaction effect of N and λ has a significant impact on the 

expected busy period. That is, The effect of the level of control threshold (N) 

depends on the arrival rate (λ). There also exists an interaction for p with λ. That 

is, the two parameters act dependently (not additive). 

� The effect of queueing type does not have a significant impact on the expected 
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busy period 

. 

5. CONCLUSIONS 
In this paper, we performed the sensitivity of the expected busy period under 16 

combinations of various levels of arrival rate (λ), control probability (p), control 

threshold (N) and queueing types (Type). Based on the factorial design statistical 

analysis, we found that a two-way interaction is presented among N, p, and λ. In a 

word, the significant Nλ (pλ) interaction implies that expected busy period to arrival 

rate depends on which control threshold (control probability) is used. That is, N with λ 

(p with λ) jointly affects the expected busy period.  
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