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Abstract- The  CESTAC (Control et Estimation STochastique des Arrondis de Calculs) 

method  is  based  on  a  probabilistic approach of  the round-off  error  propagation 

which  replaces the floating-point arithmetic by the stochastic arithmetic. This is an 

efficient  method  to estimate  the accuracy of  the results. In this  paper, we present  the  

reliable  schemes using  the  CESTAC  method  to  estimate  the  definite  double  

integral  ∫ ∫=
b

a

d

c
dydxyxfI ),(   and  the improper integral ∫

∞
=

a
dxxfI )( , where 

∈dcba ,,, R, by applying the  trapezoidal or Simpson's rule. For each kind of integrals, 

we prove a theorem to show the accuracy of  the results. According to these theorems, 

one can find an optimal value number of  the points which  we can find the best 

approximation of I  from the computer point of view. Also, we observe that by using 

the stochastic arithmetic, we are able to validate the results. 

 

Key Words- Stochastic Arithmetic, CESTAC method, Simpson’s and Trapezoidal 

rules, Double  and  Improper integrals .  

 

                                                       1.INTRODUCTION  

 

    We can use the CESTAC method which is a method based on stochastic arithmetic 

[4-8,10], in order to evaluate a definite or an improper integral numerically. At first, we 

introduce the following definition which has been mentioned in [ ]7,1 . 

Definition 1.1  Let a  and b  be two real numbers, the number of significant digits that 

are common to a  and b , denoted by baC , , can be defined by, 

   1.    for  ba ≠ , 

    |,
)(2

|log10,
ba

ba
C ba −

+
=                                                                                              (1) 

   2.    for all real numbers a, +∞=aaC , . 

One can use this definition in order to find the accuracy of  the integration methods. In 

this case, we need the number of the exact significant digits of the computed result  i. e.  

the number of the digits which are common between the computed and the exact values. 

    The CESTAC method  which was developed by La Porte and Vignes [ ]15  is  based   

on  a  probabilistic  approach of  the  round-off  error propagation which replaces the 

floating-point arithmetic by a random arithmetic [ ]15 . A good  aspect of  the method  is  

parallel  implementation. By using  this method, N  runs of  the computer program  take  
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place in  parallel. In this case, a  new  arithmetic called stochastic arithmetic is defined. 

The definitions and properties of the stochastic arithmetic have been  explained  in 

[ ]15,12,11 . Also, some of  the applications  of  this arithmetic have been presented in 

[ ]5,4,3,2 . The  basic  idea  of  the  CESTAC method [ ]10,9,8  is to replace  the  usual  

floating-point arithmetic with a random arithmetic. Consequently, each  result appears 

as a random variable. 

 In order to simultaneous implementation of the CESTAC method, one should 

 substitute the stochastic arithmetic instead of the floating-point arithmetic. In this way 

one runs every arithmetical operation N times synchronously before running the next 

operation. 

 

This method is able to detect numerical instabilities which occur during the run and 

estimate accuracy of  the computed results. During the run, as soon as the number of the 

significant digits of any result becomes zero, an informatical zero is detected and the 

result is printed by the notation @0. 

 

Let F  be the set of all the values representable in the computer. Thus, any real value r  

is represented in the form of FR∈  in the computer. 

In the binary floating-point arithmetic with P mantissa bits, the rounding error stems 

from assignment operator is, 

,2 αε PErR −−=                                                                                                             (2) 

where, ε  is the sign of r  and αP−2  is the lost part of the mantissa due to round-off 

error and E  is the binary exponent of the result. For a personal computer, in single 

precision case, 24=P  and  in double  precision case, 53=P . According to (2),  in 

order  to  perturb the last  mantissa  bit  of  the value r  then, it  is  sufficient that the 

value α   is  considered  as  a  random  variable  uniformly  distributed  on  [ ]1,1−          

(perturbation method). ThusR , the calculated result, is a random variable and its 

precision depends on its mean )(µ and its standard deviation ).(σ  

 

The idea of CESTAC method is to consider that every result FR∈ of a floating-point 

operation corresponds to two informatical results, one rounded off from below )( −R , 

the second rounded off from above )( +R , each of them representing the exact 

arithmetical result r , with equal validity. 

If   a  computer  program  is  performed N  times, the  distribution  of  the  results 

,,...,1, NiRi =  is quasi-Gaussian which their mean is equal to the exact  real value r , 

that  is ,)( rRE = [10,15]. This N samples are used  for estimating  the values µ  and σ . 

In practice, the samples iR  are obtained  by perturbation of the last mantissa bit or  

previous bits (if necessary) of  every  result R ,  then the mean of random samples ,iR  

R , is considered as the result of an arithmetical operation. In the CESTAC method  if 

,0
,
≤

rR
C  the informatical  result R  is insignificant  and  it  means a numerical 

instability exists in its related line in the computer program. 
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The value N  can be chosen any natural number like  2,3,5,7, but in order to avoid the 

execution time, usually N =3. In this case,  the number of exact significant digits 

common to R  and  to the exact value r  can be estimated by [15],  

  ,39.0log
,

−=
σ

R
C

rR
                                                                                                    (3) 

where, σ  is  the standard deviation of the samples iR . 

In the relation (3), if ,0
,
≤

rR
C , there is an instability in the evaluated result. in this case, 

R  is called an informatical or stochastic zero and it is denoted by .0@=R  

By using of stochastic arithmetic, sudden losses of accuracy , numerical instabilities  and 

the appearance of an insignificant result (stochastic zero) are detected. 

In section 2, the evaluation  of  the definite double  integral ∫ ∫=
b

a

d

c
dydxyxfI ),(  by 

using  the double Simpson's rule  is  considered. For  this  purpose, we  apply  the 

CESTAC method and present an algorithm to find the optimal number of the step sizes 

h  and  k  where  
N

ab
h

−
=  and ∈==

−
= nmNM

M

cd
k nm ,,2,2, N, and validate the 

results. In this case, we present a theorem to show the accuracy of the evaluation the 

definite double integral I . 

In section 3, the improper integral ∫
∞

=
a

dxxfI )( , where ∈a R, is considered. For this 

purpose, the  Simpson's  rule is  applied. At  first, a  theorem  is  proved  to show  the 

accuracy of  this  rule in order to compute I .  Then, the CESTAC method  is  used  to 

present the algorithm and validate the results of the numerical example  . In this case, an 

optimal natural number m  is obtained so that ∫=≅
m

a

m dxxfII .)(   

In  each  section, we compute a sample example to show the results of  the research. The 

programs have been provided by Visual Fortran in double precision. 

 

   2. NUMERICAL  ACCURACY OF EVALUATING A DOUBLE INTEGRAL  
 

It has been proved in [ ]7 , one can use the stochastic arithmetic in order to estimate I by 

using the trapezoidal or  Simpson's rule. This idea was developed generally for the  

Closed Newton-Cotes  integration  rules in [1] . If these rules are used to estimate I , if 

it exists, one can find the optimal number of the points, which minimizes the error. For 

this purpose, the stochastic arithmetic and the CESTAC method can be used to 

guarantee the number of the exact significant digits and to find  the accuracy of these 

rules. 

      We can develop the mentioned method for estimating the definite double integral 

∫ ∫=
b

a

d

c
dydxyxfI ),( . In this case, we  apply the double Simpson's rule [6], and present 

an algorithm to find the best approximation for I  with optimal step sizes h  and k . At 

first, we recall some preliminaries about numerical solution of a double integral and the 
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error of it. Then, we present a theorem to show the accuracy of the results and the 

algorithm of  evaluating the double integral in the stochastic arithmetic.  

We consider the double Integral ∫ ∫=
R

dydxyxfI ),(  where, 

∈≤≤≤≤= dcbadycbxayxR ,,,,,|),{( R}. Let ∫=
b

a
dxxgI )(  where, 

∫=
d

c
dyyxfxg ),()( . As mentioned in [6], in order to estimate I , at first, we apply the 

composite Simpson's rule over the interval ],[ dc , by step size 
M

cd
k

−
=  and the points 

Mjjkcy j ,...,1,0, =+=  where, 1,2 ≥= mM m , in order to estimate g . Then, the 

composite Simpson's rule is employed over the interval ],[ ba , by the step size 

N

ab
h

−
=  and the points Niihaxi ,...,1,0, =+=  where, .1,2 ≥= nN n  

Let nmI ,  be the approximate solution of I  computed using the composite Simpson's 

rule, then the error term is given by, 

)],,(),([
180

))((
224

4
4

114

4
4

,, µηµη
y

f
k

x

f
h

abcd
IIE nmnm ∂

∂
+

∂

∂−−
−=−=                           (4) 

where, ),( 11 µη  and R∈),( 22 µη [6]. 

In order to propose the numerical accuracy of evaluating a double integral using the 

double  Simpson's  rule, at  first  the following  proposition  about  the error  term is 

proved. 

 Proposition 2.1  Let ],[],[6 dcbaCf ×∈ , then 

+
∂

∂

∂

∂
−−

∂

∂

∂

∂
−−= )],(-),()[(

180
)],(-),()[(

180 3

3

3

34

3

3

3

34

, ca
y

f
db

y

f
ab

k
ca

x

f
db

x

f
cd

h
E nm  

),( 66 khO +                                                                                                                     (5) 

where, ),(),(
3

3

3

3

ca
x

f
db

x

f

∂

∂
≠

∂

∂
 and ).,(),(

3

3

3

3

ca
y

f
db

y

f

∂

∂
≠

∂

∂
 

Proof  We suppose that,  

).(),(),(),(),( 66

3

3
4

3

3
4

3

3
4

3

3
4

, khOca
y

f
kdb

y

f
kca

x

f
hdb

x

f
hE nm ++

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
= ηγβα  

Now, we find the values γβα ,,  and η  such that  this  formula  be exact  for  all 

polynomials with two variables and degree at most  4. For this purpose, from (4), we set 

the following system for .,,,),( 4343 yyxxyxf =  
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).)((
180

24
2424

),)((
180

24
2424

,066

,066

4
44

4
44

44

44

abcd
k

kckd

abcd
h

hahb

kk

hh

−−
−

=+

−−
−

=+

=+

=+

ηγ

βα

ηγ

βα

 

After solving this system we obtain,  

)(
180

1
cd −

−
=−= βα  and ).(

180

1
ab −

−
=−= ηγ Also, we  can  easily  show  that  this 

formula is exact for the polynomial of degree 5 like 55 ,),( yxyxf = . For this purpose, it 

is sufficient to apply the following relation for these polynomials. 

∫ ∫− −
=−−

∂

∂
−

∂

∂
+−−

∂

∂
−

∂

∂
+

h

h

k

k
kh

y

f
kh

y

f
h

k
kh

x

f
kh

x

f
k

h
dydxyxf .0)],(),()[2(

180
)],(),()[2(

180
),(

3

3

3

34

3

3

3

34

Consequently, the order of the error for this formula is )( 66 khO + .□ 

 

By using the definition  1.1  and  proposition  2.1, the  following  theorem about  the 

accuracy of the applied method to estimate I  is proved           

  

Theorem 2.1 Let nmI ,  be the approximate value of I computed using the composite 

Simpson's rule over R  with 
n

ab
h

2

−
=  and 

m

cd
k

2

−
=  where, .1, ≥nm  If  

],[],[6 dcbaCf ×∈   then,  

).
16

1

16

1
(

15

16
log10,, ,1,1, mnIIII OCC

nmnmnm
+++=

++
                                                             (6) 

Proof  According to (5), )
64

1

64

1
(

16

)(

16

)( 4

2

4

1, mnmnnm O
cd

C
ab

CII ++
−

+
−

=−  where, 

1C  and 2C  are constants which are independent of  h and  k. Hence, 

).
64

1

64

1
()(

16

15
)( ,1,1,1,1, mnnmnmnmnmnm OIIIIIIII ++−=−−−=− ++++                        (7) 

Furthermore, 

),1(
16'16'

16
)1(

)
64

1

64

1
(

16

'

16

'2

1

)(2
21

,

21

,

,,

,

,,

,
O

CC

I
O

O
CC

I

II

I

II

II
nm

nm

mn

mnmn

nm

nm

nm

nm

nm +
+

=+
+++

=−
−

=
−

+ +

                                                                                                                                       (8)                                                                                                 

 where, 4

11 )(' abCC −= and .)(' 4

22 cdCC −=  On  the other hand from (7), 

=+
++−

=−
−

=
−

−

++++

++
)1(

)
64

1

64

1
()(

16

152

1

)(2
,

,

1,1,,

,

1,1,,

1,1,
O

OII

I

II

I

II

II

mnnm

nm

nmnm

nm

nmnm

nmnm  
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).1(
15

16

,

,
O

II

I

nm

nm +
−

                                                                                                          (9) 

Consequently, from definition 1.1 and relation (8),  

),
16

1616
(|

16'16'

16
|log

21

,

10, , nm

nm

nm

nm

mn

II O
CC

I
C

nm +

+
+

+
+

=  

therefore from (9), 

=
+

+
+

=
+

+

++
)

16

1616
(|

16'16'

16

15

16
|log

21

,

10, 1,1, nm

nm

nm

nm

mn

II O
CC

I
C

nmnm

).
16

1

16

1
(

15

16
log10,, mnII OC

nm
+++ □ 

The relation (6) shows that  the number of significant digits in common between nmI ,  

and 1,1 ++ nmI , are also in common with the exact value of integral in companion with the 

term .
15

16
log10  Since, ,1

15

16
log0 10 <<  if this term is neglected then, the significant bits 

in common between nmI ,  and 1,1 ++ nmI  are also in common with I up to less than 1 bit. 

Also, for m and n large enough, .1)
16

1

16

1
( <+

mn
O  

The following algorithm evaluates the double integral ∫ ∫=
b

a

d

c
dydxyxfI ),(  with  

step sizes 
n

ab
h

2

−
=  and 

m

cd
k

2

−
= , 1, ≥nm , using the double Simpson's rule in the 

stochastic arithmetic. 

 

 1. Read  a,b,c,d,m,n, 

  2. Set   ,0←ssumhk  

  3. Evaluate the approximate value of I  by using the Simpson's rule  in the stochastic   

      arithmetic and call it sumhk, 

  4. If |ssumhk-sumhk|=@0 then write sumhk,m,n and stop else 

      set ssumhk←  sumhk, n←2n and m←2m and go to step 3. 

 

 Now, we evaluate a double integral  which is computed by the mentioned algorithm 

and show the accuracy of results. 

  

Example 1  In this example, we consider the double integral ∫ ∫ +=
2

4.1

5.1

1
)2( dydxyxLnI  

[6]. The exact value of  the integral is I =0.42955452754827395. The  results are shown 

in table 3. In this case, the optimal value of points are 1024210 ==N and  

51229 ==N with approximate value 0.429554527548276. 
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Table 1                                                      

  (The results of  the Example 1)                                  

 

n  

m              nmI ,     || 1,1, ++−= nmnm IIerr   errC  

2  1 0.429552438679568    -------------------------  ------ 

3  2 0.429554393627392 1.954947823882650E-006 10.39 

4  3 0.429554519122406 1.254950141212537E-007 9.20 

5  4 0.429554527020773 7.898366738423590E-009 7.46 

6  5 0.429554527515293 4.945199065057674E-010 6.10 

7  6 0.429554527546214 3.092135806663047E-011 5.29 

8  7 0.429554527548147 1.932750256135781E-012 3.97 

9  8 0.429554527548268 1.205147093230607E-013 2.65 

10  9 0.429554527548276 8.123131796840729E-015 2.01 

11 10 0.429554527548276                     @0 -0.845 

 

 3. NUMERICAL ACCURACY OF EVALUATING AN IMPROPER INTEGRAL 

 

In this section, a theorem is explained which is used in order to evaluate the improper 

integral ∫
∞

=
a

dxxfI )( , if  it exists, one  can  find  a  natural  number  m  such  that 

.)(∫=≅
m

a
m dxxfII  In  this  case, mI   is  a  definite  integral  and as we explained in 

section 3, we can use  the stochastic arithmetic  in order  to compute it  and  find  the 

optimal number of the points  m

optn to find a satisfactory approximation for mI . In this 

case, if  m is large enough then )( mm OII ε+=  where, .0lim =∞→ mm ε  

Now, let nmI ,  be the approximate value of  mI  computed using the trapezoidal rule with 

step size 
n

am
h

2

−
=  then, as it has been mentioned in [1,7], the error term can be written 

as follows, 

).())(')('(
12

4
2

, hOafmf
h

II mnm +−=−                                                                       (10)   

Theorem 3.1  Let ],[4 maCf ∈  and nmI ,  be the  approximate  value of  mI computed 

using the trapezoidal  rule with  step size 
n

am
h

2

−
=   where, )( mm OII ε=− . Also, let  

)(')(' afmfkm −= ,  m

optnn =  and m

optnn 2'=  be the optimal number of  the points in the 

intervals ],[ ma  and ]2,[ ma  respectively  in  the stochastic  arithmetic. If  for  m  large 

enough, 1||0 2 <<≤
m

m

k

k
, 1' +≥ nn  and mh ε<4  then, 

).(|
4

1
1|log

21'

2

10,, ,',2, m
O

k

k
CC m

nn

m

m

IIII nmnmnm

ε
+−−=

−−
                                                    (11) 
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Proof According to (10),  )
16
(

412

)( 42

, nnmmnm

m
O

am
kII +

×

−
=−  and 

).
16

)2(
(

412

)2(
'

42

22,2 nnmmnm

m
O

am
kII +

×

−
=−  So, from the hypothesis, for m large enough 

we have, 

=
−−−

−−−
=

−

−

)(

)(

,

22',2

,

',2

mmnm

mmnm

nm

nm

IIII

IIII

II

II
=

+
×

−

+
×

−

)(
412

)(

)(
412

)2(

2

2'

2

2

mnm

mnm

O
am

k

O
am

k

ε

ε
 

)(
4

1
.

))(1(
4

)(

))(1(
4

)2(

21'

2

2

2

2

2

'

2

2

m
O

k

k

m
O

am
k

m
O

am
k

m

nn

m

m

m

nm

m

nm ε
ε

ε

+=

+
−

+
−

−−
.                                                  (12) 

By using the definition 1.1, 

.||log||log
',2,

,

10

,

',2,

10,, ,',2,

nmnm

nm

nm

nmnm

IIII
II

II

II

II
CC

nmnmnm −

−
+

+

+
=−  

Since, for m large enough, nmI , IIm ≅≅ , the first term of the above relation is almost 

zero. Furthermore, from (12), the second term of this relation is 

|1|log||log
,

',2

10

',2,

,

10
II

II

II

II

nm

nm

nmnm

nm

−

−
−−=

−

−
).(|

4

1
1|log

21'

2

10
m

O
k

k m

nn

m

m ε
+−−=

−−
 

Consequently, 

).(|
4

1
1|log

21'

2

10,, ,',2, m
O

k

k
CC m

nn

m

m

IIII nmnmnm

ε
+−−=

−−
  □ 

According to (11), the number of the common significant digits between nmI ,  and ',2 nmI  

are almost equal to the number of the common significant digits between nmI ,  and the 

exact value of I  in company with the term |
4

1
1|log

1'

2

10 −−
−

nn

m

m

k

k
 which is a small value 

as m increases. Thus, one can say, when nmnm II ,',2 −  has not any significant digits, nmI ,  

is an approximation of I which minimizes the error, and m is the local optimal number 

which after this number the computations are useless. Also, since mε  tends to zero when 

m increases, the last term in (11) is negligible. 

We can present the similar discussion for the Simpson's rule. In this case, the following 

relation is proved. 

),(|
16

1

'

'
1|log

41'

2

10,, ,',2, m
O

k

k
CC m

nn

m

m

IIII nmnmnm

ε
+−−=

−−
                                                 (13) 
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where, ],[6 maCf ∈  and nmI ,  be  the approximate value of  mI  computed using  the 

Simpson's rule and ).()( )3()3( afmfkm −=  Also,  for m large enough, 1|
'

'
|0 2 <<≤

m

m

k

k
, 

1' +≥ nn  and mh ε<6 . 

We note that, the optimal number of  m must be the same value for both of  the rules 

but, from (13), the Simpson's rule is faster than and  the approximate value of nmI ,  is 

more accurate than the trapezoidal rule. 

In table 2, we present the results of  the example 2  by  applying  the trapezoidal and 

Simpson's rules. As we observe, the optimal number of  m is the same value for both of  

rules and in other words it is independent from the rule which is applied. 

Example 2  In this example, the improper integral =
+

= ∫
∞

dx
x

x
I

0 22 )1(

cos
 

5.778636748954609E-001 is computed [13]. In this case, dx
x

x
I

m

m ∫ +
=

0 22 )1(

cos
. Hence, 

∫∫
∞∞

=≤
+

≤−
mm

m
m

dx
x

dx
x

x
II .

3

11
|

)1(

cos
|||

3422
 So, we can easily see that the conditions 

of  the  theorem  3.1  are satisfied. According  to the  table  2, we  conclude  that, the 

approximate value for I  using  the  trapezoidal  rule  is  5.778636748954596E-001 

and using the Simpson's rule is 5.778636748954605e-001  with the same optimal  value 

m=16384.  

 
Table 2                                                                              

 (Comparison of  the Trapezoidal and Simpson's rules in example 2)                                

  a  m             m
optnm

I
,

       

    (Trapezoidal rule)   

  

||
,

II m
optnm
−  

              m
optnm

I
,

        

     (Simpson's rule) 

  ||
,

II m
optnm
−  

0 4 5.773796170835173E-01  4.841E-04 5.773796170835182E-01 4.841E-004 
4 8 5.780633615009729E-01  1.997E-04 5.780633615009730E-01 1.997E-004 
8 16 5.778628705878691E-01  8.043E-07 5.778628705878700E-01 8.043E-007 
16 32 5.778640935095556E-01  4.186E-07 5.778640935095565E-01 4.186E-007 
32 64 5.778637279935450E-01  5.310E-08 5.778637279935458E-01 5.310E-008 
64 128 5.778636776584387E-01  2.763E-09 5.778636776584395E-01 2.763E-009 
128 256 5.778636746630362E-01  2.324E-09 5.778636746630371E-01 2.324E-010 
256 512 5.778636748967301E-01  1.269E-12 5.778636748967309E-01 1.270E-012 
512 1024 5.778636748953120E-01  1.489E-13 5.778636748953129E-01 1.480E-013 
1024 2048 5.778636748954418E-01  1.910E-14 5.778636748954426E-01 1.832E-014 
2048 4096 5.778636748954575E-01  3.331E-15 5.778636748954584E-01 2.442E-015 
4096 8192 5.778636748954594E-01  1.443E-15 5.778636748954603E-01 5.551E-016 
8192 16384 5.778636748954596E-01  1.221E-15 5.778636748954605E-01 3.331E-016 
16384 32768 5.778636748954596E-01      @0 5.778636748954605E-01       @0 
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                                                         4. CONCLUDING REMARKS 

 

       The numerical solution of a definite integral  is an important matter in integration 

discussions. In this paper, we observe that by using  the CESTAC method  based on the 

stochastic arithmetic, one can use the numerical integration rules to approximate a 

definite or improper integral  and validate the result step by step. 

 According to the  theorems, one can find an optimal value  of  the  points  so that  the 

computed result  is the best approximation from the computer point of view. 

We have shown that, it is possible during the run of the code of the integration rules, to 

determine the optimal number of  the  points, to correctly stop the process, and  to 

estimate the accuracy of  the computed result using the mentioned integration rules.  
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