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Abstract- Group sequential designs are widely used in Phase II clinical trials, which are 
usually undertaken to evaluate the response probability of specific treatment regimen. In 
most randomized clinical trials with sequential patient entry, fixed sample size design is 
unjustified on ethical grounds and sequential designs are often impractical. However 
group sequential designs are generally more practical and they provide much of the 
saving possible from sequential designs. Optimal restricted two-stage design is the 
simplest form of a group sequential design. 

In this study, group sequential design obtained by ( )t∗α  functions characterized 

using the type-I error probability and optimal restricted two stage design has been 
compared for the cases that the group sizes are equal. Furthermore, their efficiency 
regarding fixed sample size design has been calculated and the results have been 
discussed. 
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1. INTRODUCTION 

 
For ethical, scientific and economic reasons, clinical trials are often repeatedly 

monitored for evidence of treatment benefit or harm.To achieve this, statisticians 
conduct interim analyses periodically on accumulating data [1]. Repeated testing at 
conventional critical values can substantially inflate the overall type I error rate, and 
various group sequential testing procedures have been proposed to achieve the desired 
levels of type I error [2, 3]. 

Pocock [2], O’Brien&Fleming [3] were among the first workers to develop group 
sequential design by modifying the initial work of Armitage [4]. DeMets&Ware [5, 6] 
considered asymmetric group sequential boundaries adapted from Pocock and 
O’Brien&Fleming designs and from Wald’s sequential probability ratio test. These 
designs are based on equally spaced analyses. Jennison [7] and Eales&Jennison [8] 
explored the extent of possible reductions in expected sample size by searching for 
optimal symmetric group sequential one-sided tests. Barber&Jennison [9] extend the 
optimal symmetric group sequential tests of Eales&Jennison [8] to the broader class of 
asymmetric designs. Jennison&Turnbull [10] describe the parametric family of tests 
proposed by Emerson&Fleming [11] and extended by Pampallona&Tsiatis [12] to 
include asymmetric tests with unequal Type I and Type II error probabilities. We refer 
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to the recent book by Jennison&Turnbull [10] for more details about group sequential 
test.  

 Lan&DeMets [13], Kim&DeMets [14] proposed the group sequential design 

obtained by ( )t∗α , use function, which characterizes spending the type I error 

probability (α). This design is more useful because it is not necessary that each group 
has equal observation. So that in this test group size is equal or unequal.  

Two-stage group sequential design is the simplest form of a group sequential design. 
Owen [15] described two-stage tests for one-sided hypotheses about a normal mean 
with known variance. Hald [16] derived optimal designs for this same problem using 
minimax and Bayes weighted average optimality criteria. Calton&McPherson [17] 
considered hypothesis tests for normal and binomial responses and presented optimal 
two-stage designs, which did not allow acceptance of the null hypothesis at the first 
stage. Dewith [18] extended the work of Calton and McPherson for binomial responses 
by developing optimal designs that allowed acceptance or rejection at the first stage 
none of these designs used the fixed sample critical value at the final stage. Case et. all 
[19] developed optimal two-stage designs that have the restriction of using the fixed 
sample critical value at the final stage. 

In this paper, we compared the statistical properties of the group sequential design 

based on ( )t∗α  function, and optimal restricted two-stage design in the setting of one-

sided comparative clinical trials with normal response. 
 
2. GROUP SEQUENTIAL DESIGN BASED ON THE TYPE-1 ERROR 

SPENDING RATE FUNCTION 

 

Lan&DeMets [13] and Kim&DeMets [14] have suggested a flexible group 
sequential design based on the use function approach. The design, needs only the 

specification in advance an α  spending rate function, ( )t∗α , which characterizes the rate 

at which the type-I error probability is spent. The boundary is determined by ( )t∗α , and 

by discrete times jt , i,,1j K= ; but it does not depend on times jt , ij >  nor the total 

number of repeated tests,  K,  to be performed. 
 

( )t∗α  function can be defined as, 

( ) { }0H1t0 ,tP    t ≤≤≤τ=α∗               

                  (1) 

( ) { }
{ } { }01i0i

0ii

HtPHtP             

HtP   t

−

∗

=τ+=τ=

≤τ=α
 

where τ  is the first time that a standard Brownian process Wt. In this paper the 

following ( )t∗α ’s are studied; 

 

          1. ( ) ( )[ ]tZ12t 211 α−
∗ ϕ−=α                 0 ≤ t ≤ 1               

(2) 
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   2. ( ) ( )[ ][ ]t1e1lnt2 −+α=α∗                                 0 ≤ t ≤ 1                               (3) 

      3. ( ) tt3 α=α∗                                                         0 ≤ t ≤ 1           (4) 

   4. ( ) 23
4 tt α=α∗                                                      0 ≤ t ≤ 1                    (5) 

      5. ( ) 2
5 tt α=α∗                                                       0 ≤ t ≤ 1                     (6) 

 

When the group sizes are equal ( )K,1,k Kkt k K== , it generates ( )t1
∗α , discrete 

group sequential boundaries approximate to those of O’Brien&Fleming and it 

generates ( )t2
∗α , boundaries approximate to those of Pocock. 

The clinical trial we shall consider involves the comparison of two normally 
distributed with means eµ  and cµ  for the experimental and the control treatments 

respectively, and common variance 2σ . Such that ( )2
ee ,N~X σµ , ( )2

cc ,N~X σµ . It is 

planned as a test of the null hypothesis ce0  :H µ=µ  against the one-sided alternative 

ce0  :H µ>µ . A group sequential test is specified by the maximum number of analysis, 

K, the total number of observations at each analysis n1, …., nk. Then at the k th analysis, 
the standardized test statistic after each group of observations is defined as, 

 

k
2

n

1i
ic

n

1i
ie

k

nσ2

XX

Z

kk

∑∑
==

−
=   k=1,…, K    (7)                                                 

 

( )1,∆N~Zk  under H1 and   ( ) ( )2σn)µµ∆ kce −=   is the noncentrality 

parameter with ce µ−µ=δ , representing the clinically meaningful mean treatment 

difference to be detected at given α, 1-β and K. The test statistics Zk,   is compared with 
group sequential boundaries (

k
C ) as below following; 

1. We stop to reject H0  if  Zk  ≥Ck  k=1,…, K-1, otherwise, we continue to the next 
stage. 
2. We stop to reject H0 if  Zk  ≥Ck  k=K, Otherwise we stop to accept H0. 

Therefore, the sample size for each treatment in a clinical trial is determined by 
222

k δ∆σ2n = and maximum sample size is given by Kn2n k= . When 1K = , that is 

for a fixed sample size design, this formula becomes the familiar sample size formula for 

normal data [10, 13]. But expected sample size, ESS is given by, ∗τ= nESS , where ∗τ is 

the expected boundary crossing time. It can be calculated ESS, either under H0 or H1. 
∗τ  

goes to 1 under the null hypothesis. So ( ) nHESS 0 ≅ . 

Constants (Ck), ∆, n, ∗τ   and ESS under the alternative hypothesis for K=1,2  
α=0.05,              1-β=0.90 are given in Table 1 for one-sided tests of hypothesis using the 

the ( )t∗α    use function, with equal increments of information time. For more complete 
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tabulations of various constants can be found Reboussin et all. [20] and 
Jennison&Turnbull [10]. 

 

Table 1. Group sequential one-sided designs at given 05.0α = , 90.0β1 =−  

and  K=1, 2 ( )1;5.0t i =  

K ( )tα∗  Ck ∆  n *τ  ESS 

1 αi
*(t) 1.645 2.926 34.24 1 34.24 

 α1
*(t) 

2.538 
1.662 

2.079 34.57 0.839 29.01 

 α2
*(t) 

1.866 
1.885 

2.184 38.17 0.688 26.26 

2 α3
*(t) 

1.960 
1.807 

2.152 37.06 0.712 26.39 

 α4
*(t) 

2.104 
1.737 

2.119 35.93 0.747 26.84 

 α5
*(t) 

2.241 
1.699 

2.102 35.35 0.778 27.51 

           a Multiply each value by ( )2δσ  

 
3. OPTIMAL RESTRICTED TWO-STAGE DESIGNS 

 
     The two-stage design is the simplest form of a group sequential design. In this 
design, the null hypothesis 00 θθ :H =  is tested versus the alternative  H 1 :  0θθ >  

( 0θθ or ≠   ). 

    The two-stage design for one-sided test as follows: 
 
     Stage 1: Accrue 1n  patients and calculate  

                        
θ̂

0
1

σ

θθ̂
Z

−
=                                                    (8)  

where θ̂  is computed from data on the first 1n  patients.  

i)  Accept 0H  if 11 CZ < ;  

ii) Reject 0H  if 21 CZ > ; 

iii) Otherwise; continue the second stage. 
 

Stage 2: Accrue an additional 2n  patients. Let 21 nnn +=  and calculate, 

         

θ
σ

θ−θ
=

ˆ

0
ˆ

Z                                          (9) 

 where θ̂  is computed from data on all n patients. 
i) Accept 0H  if 3CZ < ; 

ii) Otherwise, reject 0H . 
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One may want to test the mean of normal distribution; in this case, Z1 and Z 
statistics are defined as following, 

1
2

21
1

n2

XX
Z

σ

−
=  

      
n2

XX
Z

2

21

σ

−
=  

Z1 and Z are distributed standard normal distribution and their joint distribution is 
bivariate normal with zero means, unit variances, and correlation (n1/n)1/2 .The  
maximum sample size for the two-stage design is n and is realized whenever a second 
stage is necessary. The expected sample size (ESS) of the two-stage design is given, 

 

( ) [ ])(P)p1(1nESS S θ−−=θ                             (10) 

 
where ( )θSP  denote the probability that the trial will be stopped at the first stage, and p 

is the rate of the number of patients at the first stage to the number of total patients at 
the second stage nnp 1= . θ value can be computed for  10  , θθ  or maxθ , where 0θ  is the 

θ value when 0H  is true; 1θ  is the θ value when 1H  is true; and maxθ  is the maximum 

value of θ. 
There are five unknown parameters in the two-stage design, namely: 1n , 2n , 1C , 

2C  and 3C . The critical value at the second stage, 3C , will be set to equal that of the 

fixed sample test 

))
2

1((or    )1(C 11
3

α
−ϕα−ϕ= −−                                  (11)         

            
where ( )xϕ  denotes the standard normal distribution function. The other four 

parameters of interest are chosen to satisfy the two equations: 
 
      )p;,C;C,C(B)C(Φ1α 3212 ∞+−=                                                              (12) 

        )p;,uC;puC,puC(B)puC(Φ1β1 3212 ∞−−−+−−=−                     (13) 

 
where,  

( ) ( )( )( ){ } dz dyzpyz2yp121expp1π21p)d,c,b,B(a,
b

a

d

c

22∫ ∫ +−−−−=          

and ( ) σθθnu 01 −= . 

 
So that the probability of rejecting 0H  at the first stage plus the probability of 

continuing the trial and rejecting 0H  at the second stage is equal to α, when assuming 

0H  is true. The desired power of the trial β−1  is the same probability under the 

alternative hypothesis. Eq. (12) and Eq. (13) are solved iteratively by numerical 
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integration of the bivariate normal distribution using a double precision function [19, 
21, 22]. 

With five parameters and only three constraints given by Eq. (11), (12), (13) 
optimality criteria are used to determine the parameter values. So, this test is called 
optimal restricted two-stage design. In this study, we have examined Minimax and 
Bayes criteria.  

 
Minimax Criterion:  
It is described as minimizing the maximum expected sample size with respect to the 

five design parameters ( )[ ]( )θESS maxmin . For the two-stage design maxθ  is; 

                        
( )

1

21
0max

n2

CC σ+
+θ=θ                                 (14) 

                                  

When maxθ  is replaced into the ( )θESS  function, the function which will be 

minimized for one-sided test is: 

minimize 






















 −
Φ−+







 −
Φ−−=θ

2

CC
1

2

CC
)p1(1n)(ESS 1221

max                         (15) 

Bayes Criterion:  
Minimize a weighted average of the ESS under 0H  and the 1H , 

minimize ( ) ( ) ( ) ( )10w wESSESSw1ESS θ+θ−=θ                      (16)     

 
Using a weight of 0 for this criterion gives the most efficient designs if the null 

hypothesis is true while a weight of 1 gives the most efficient designs if the specified 
alternative is true [19, 21].  

The design parameters ( 1C , 2C , 3C , p), the probabilities ps(θ) and maximum (n) 

and expected sample sizes (ESS) obtained using the different criteria are given in Table 
2  for 0.05 α = , 0.90 β1 =− . The choice of p is sometimes determined by factors 

unrelated to optimal designs. For some studies it might be practical to choose equal 
samples at each stage. Therefore, if 50.0p = , each stage has equal sizes. Table 2 gives 

the optimal design parameter for 50.0p = . In tables, fn  denotes the sample size 

required using a fixed sample design. 
 

Table  2. Optimal Restricted Two-Stage One- Sided Designs for Minimax and Bayes 
Criterion at given 05.0α = , 90.0β1 =− . 

Criterion p C1 C2 C3 PS(θθθθ) nf
a 

n
a 

ESS(θθθθ0)
a 

ESS(θθθθ1)
a 

Minimax 0.588 0.819 2.086 1.645 0.527 34.256 38.024 25.316 27.508 
 0.500 0.667 2.130 1.645 0.464 34.256 39.088 24.152 27.472 

Bayes          
0w =  0.382 0.474 2.168 1.645 0.697 34.256 41.280 23.500 28.708 

 0.500 0.595 2.178 1.645 0.739 34.256 38.230 24.116 27.542 
1w =  0.540 0.737 2.111 1.645 0.629 34.256 38.572 24.596 27.404 

 0.500 0.700 2.109 1.645 0.609 34.256 39.497 24.185 27.457 
    a Multiply each value by (σ/δ)2
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Example: 

 

 In this section, we described a clinical trial to evaluate the potential 
chemoprevention agent tamoxifen in women with early stage breast cancer and showed 
how to determine the maximum sample size for group sequential and optimal restricted 
two-stage design. 
 The drug tamoxifen was evaluated at the University of Wisconsin-Madison as a 
potential chemoprevention agent in women with early stage breast cancer and compared 
with a placebo in a double blind clinical trial [23]. In addition to evaluating the 
recurrence of cancer, this study measured the effect the drug might have on the lipid 
cholesterol level. If the level were decreased, a reduction in cardiovascular risk would 
be induced. If the cholesterol level were increased, the drug might be increasing the risk 
of heart disease and thus diminish the potential benefit. For women eligible for this 
study, the mean cholesterol level on the placebo was expected to be 220 mg/dl with a 
standard deviation of 30 mg/dl. A clinically significant change induced by the drug was 
thought to be a 20 mg/dl decrease or increase in mean cholesterol level. 
 Suppose we wish to design this trial, using a 5 per cent significance level for a 
one-sided test of hypothesis with 90 per cent power to distinguish between mean 
cholesterol levels of 220 mg/dl and 200mg/dl. Assuming that the measurement of 
cholesterol level is normally distributed, the maximum sample size determination for 

group sequential design based on ( )tα i

∗   use function, i=1,…,5 and optimal restricted 

two-stage design are given below; 
 
 

( )tα∗  use funct ion n Criteria n 

α1
*(t) 77.80 Minimax 87.94 

α2
*(t) 85.86 Bayes  

α3
*(t) 83.36 0w =  86.02 

α4
*(t) 80.84 1w =  88.87 

α5
*(t) 79.53   

 

 

 

4. COMPARISON OF THE TEST DESIGNS AND RESULTS 

 

In this section, efficiency of the designs regarding fixed sample size design has been 
examined. Therefore, the obtained expected sample sizes have been used for the cases 
in which the group sizes are equal for 1,50.0t =  in group sequential design (Table 1) 

and 50.0p =  in optimal restricted two-stage design (Table 2). 

 
The expected sample sizes of the designs relative to the fixed sample size are called 

the efficiency.  
The efficiencies of the tests are computed as; 
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• Under 1H  hypothesis, 
f

1
1

n

)(ESS
R

θ
=  

• Under 0H  hypothesis, 
f

0
0

n

)θ(ESS
R =  

• The efficiency of the designs for equal group sizes have been presented in Table 3 
at given  05.0,01.0α =  and 95.0,90.0,80.0β1 =− . 

  
Table 3.  Efficiencies for group sequential designs and two-stage designsa

 

at given α , β1−  

αααα 1-ββββ )t(1
∗α  )t(2

∗α  )t(3
∗α  )t(4

∗α  )t(5
∗α  T-S D. w = 0 w = 1 

 0.80 0.948 0.867 0.862 0.866 0.879 0.853 0.861 0.853 
  1.003 1.114 1.076 1.043 1.031 0.629 0.619 0.632 

0.01 0.90 0.912 0.789 0.789 0.799 0.814 0.822 0.828 0.821 
  1.002 1.103 1.068 1.038 1.023 0.629 0.624 0.635 
 0.95 0.875 0.730 0.733 0.744 0.760 0.785 0.789 0.783 
  1.003 1.095 1.064 1.036 1.021 0.632 0.629 0.639 
 0.80 0.900 0.847 0.847 0.855 0.869 0.837 0.840 0.837 
  1.008 1.111 1.075 1.047 1.032 0.699 0.696 0.700 

0.05 0.90 0.847 0.767 0.771 0.784 0.803 0.802 0.804 0.802 
  1.006 1.098 1.066 1.040 1.026 0.705 0.704 0.706 
 0.95 0.797 0.708 0.712 0.727 0.748 0.765 0.765 0.764 
  1.006 1.088 1.058 1.035 1.022 0.712 0.711 0.713 

      a Top number is R1 (when θ = θ1) 
       Bottom number is R0 (when θ = θ0) 
 
When Table 3 is examined, we obtain the following  results:  
 

• Since Group Sequential designs mentioned in this study do not allow acceptance 
of H0 until the final stage, their performance under the null hypothesis is poor. 
They perform much better under the alternative hypothesis. 

• However, in each case, the ESS is the smallest for the optimal restricted two-
stage designs under the null hypothesis. 

• Moreover, the ESS under the alternative hypothesis for the optimal restricted 
two-stage designs is usually smaller than that of the Group Sequential designs. 

• ( )t2
∗α  and Pocock’s designs performance is better than other designs under the 

alternative hypothesis for large powers. 
• If we examined the tables in second and third sections; the expected sample 

sizes are approximately the same in two-stage designs and group sequential 
designs under the alternative hypothesis. However, the expected sample sizes are 
rather small in two-stage designs under the null hypothesis. So, two-stage 
designs result approximately in an expected % 40 savings in the expected 
sample size under the null hypothesis.  

• So, if we compare the optimal restricted two-stage designs with the group 
sequential designs in case of 2N = , we can say two-stage design is preferable in 
terms of sample sizes and performance. 
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•  However, the test design to be used in a clinical trial is generally predetermined. 
The existence of parameters in an optimal two-stage design has some 
restrictions. Therefore, it is more advisable to use group sequential design in 
clinical trials where there is a probability of continuation.  
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