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Abstract- A numerical order verification technique is applied to demonstrate that the 

asymptotic expansions of solutions of the Duffing equation obtained respectively by the 

Lindstedt-Poincaré(LP) method and the modified Lindstedt-Poincaré(MLP) method are 

uniformly valid for small parameter values. A numerical comparison of error shows that 

the MLP method is valid whereas the LP method is invalid for large parameter values.  
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1. INTRODUCTION 

The Duffing equation 

tpuuu Ω=++ cos32

0 εεω&&  

has been used to model a number of mechanical and electrical systems [1]. The 

differential equation that describes this oscillator has a cubic nonlinearity, and it has 

been named after the studies of G. Duffing in the 1930's. Traditional perturbation 

methods, such as the Lindstedt-Poincaré(LP) method, the multiple scale method and the 

harmonic balance method, are powerful tools for obtaining approximate solutions of the 

Duffing equation as well as other nonlinear equations. Asymptotic expansion solutions 

by perturbation methods are formally in the form of a power series of small parameter 

ε  and are valid only for small value of ε  [2]. A modified Lindstedt-Poincaré(MLP)  

method [3, 4] was proposed to obtain asymptotic expansion solutions of the Duffing 

equation, which works not only for small parameter values but also for large parameter 

values of ε . The essential idea of the MLP method is to transform the parameter ε  into 

a new parameter )(εαα = , which is defined such that the value of α  is always kept 

small regardless of the magnitude of the original parameter ε . When an asymptotic 

expansion is formally constructed, it is important to verify that it accurately 

approximates the exact solution and that the error in the expansion behaves 

asymptotically as expected. Typically, asymptotic solutions for a few specific values of 

ε  are chosen to show that the error between the asymptotic solution and exact 

(numerical) solution is relatively small. However, so few comparisons are sometimes 

insufficient to demonstrate that the asymptotic expansion is uniformly valid, which 

means the numerical error of the truncated asymptotic expansion is of the same order of 
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magnitude with respect to the expansion parameter as the terms neglected. Although the 

quantitative error may be small, it does not become small at the rate expected [2, 5]. 

Therefore, one needs to further verify that the solution is indeed asymptotically accurate 

to the order to which it is constructed. In this paper, a numerical order verification 

technique, first proposed by Bosley [5], will be applied to demonstrate that the 

asymptotic expansions of solutions of the Duffing equation are uniformly valid up to the 

third order for small values of parameter ε . The order of the asymptotic expansion 

solutions of free vibration of the Duffing equation has been verified in Ref.[6], but we 

note that the reversion method is adopted there and the consequent expansions contain 

the secular term tt sinε , which are effective only for small values of tε . In this paper, 

the use of the LP method and the MLP method can overcome this defect. Furthermore, 

instead of evaluating the asymptotic solution at one fixed point 0tt = in Refs.[5-9] or 

finite fixed points itt = ( ),,2,1 mi L= in Ref.[10], maximum absolute error on an 

interval ],0[ T  is introduced in this paper to give a more comprehensive evaluation of 

the error between the asymptotic and numerical solutions. When estimating numerical 

errors due to time evolution, it is more correct to use the maximum error on the time 

domain in engineering applications. Finally, a numerical comparison of the error of the 

LP method with that of the MLP method shows that the MLP method works also for 

large values of ε  whereas the LP method is invalid.  

 

2. ASYMPTOTIC EXPANSIONS OF SOLUTIONS 
 

Consider the harmonically excited vibrations of the Duffing equation 

tpuuu Ω=++ cos32

0 εεω&& ,                                                                                   (1) 

0)0(,)0( == uau & ,                                                                                                  (2) 

where Ω  is the forcing frequency, p  is the forcing amplitude. Taking a time 

transformation tΩ=τ , Eq.(1) becomes 

τεεω cos32

0

2 puuu =++′′Ω .                                                                               (3) 

Following the procedure of the classical LP method [2], the first four terms of the 

approximate solution of fundamental resonance can be worked out as follows  
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Similarly, following the procedure of the MLP method [4], the first four terms of the 

approximate solution of fundamental resonance of Eq.(3) can be worked out as follows 
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3. NUMERICAL ORDER VERIFICATION OF ASYMPTOTIC EXPANSIONS 

We first give a brief introduction to the Bosley’s technique [5]. Assume that the 

asymptotic expansion solution of a nonlinear equation is 
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The absolute error between the asymptotic solution and the exact solution is 
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where K  is a constant. Taking the logarithm of both sides of Eq.(18) yields 

εlog)1(loglog ++= NKEN . 

If NE  is of order )( 1+NO ε  for a fixed time 0tt =  and for small values of ε , the value of 

NElog  as a function of εlog  should be linear with slope 1+N . Therefore, when we 

graph NElog  versus εlog  for different values of ε , these points should be nearly on a 
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line and the linear equation that interpolates these points using a linear least-squares fit 

should have slope 1+N . 

The error of Eq.(18) is evaluated at a fixed point 0tt =  in Refs.[5-9]. We think it is 

partial because the errors are different at different points, namely, the error may be 

small at one point but large at the other points. In this paper, maximum absolute error 

on an interval ],0[ T  is introduced as 

)},({max),(max
],0[

εε tEtEErrorMaximum N
Tt

N
∈

== ,                                             (19) 

which can give a comprehensive estimation of difference between the exact solution 

and the asymptotic solution over the domain of interest. Eq.(19) can be numerically 

approximated by 

},,2,1),,(max{),(max mitEtEErrorMaximum iNN L=== εε                          (20) 

where it  are fixed points in the interval ],0[ T  and m  is sufficiently large integer.  

In the following examples, the values of parameters in Eqs.(1), (2), (19) and (20) are 

assumed to be 10 =ω , 4=a , 16=p , 10=T , it i 05.0= , 200,,2,1 L=i . To verify the 

order of asymptotic expansion (4) obtained by the LP method, we first find the 

numerical solutions of Eqs.(1) and (2) with ε  starting from 001.0  and ending at 03.0  

by a step size 001.0 . Next, we evaluate the asymptotic expansion (4) at the same values 

of ε  and it  as the numerical solutions for 2,1,0=N  and 3 respectively. In Fig.1 we 

plot the values of the error at these 30 points, namely, 0logE , 1logE , 2logE  and 3logE  

as functions of εlog . The exact solution ),( εtuexact  in Eq.(18) is replaced by the 

numerical solution. For 2,1,0=N  and 3, the least-squares fit of these data is used to 

determine respectively the slopes 1.00252, 1.96014, 2.95284 and 3.94723, whose 

relative errors are less than 2%, compared with the theoretical slopes =+1N 1, 2, 3 and 

4, respectively. So we can conclude that the asymptotic solution of the Duffing equation 

obtained by the LP method is indeed uniformly valid for small parameter values. In this 

paper, the computer algebra system Mathematica is applied to implement relative 

calculations and plots.  

Similarly, the verification of the order of asymptotic expansion (10) with (11)-(16) 

obtained by the MLP method is shown in Fig.2, where α  starts from 005.0 (0.0006 

forε ) and ends at 1.0  (0.0139 forε ) by a step size 0025.0 . For 2,1,0=N  and 3, the 

least-squares fit of these data is used to determine respectively the slopes 1.0001, 

2.05442, 2.99075 and 4.00381, whose relative errors are less than 2.7%, compared with 

the theoretical slopes =+1N 1, 2, 3 and 4, respectively. Thus we can conclude that the 

asymptotic solution of the Duffing equation obtained by the MLP method is indeed 

uniformly valid for small parameter values. 

 

4. NUMERICAL COMPARISON OF THE MLP METHOD WITH THE LP 

METHOD 

Now we show a numerical comparison of the MLP method with the LP method. For 
 

simplicity, we take only the third order approximation as an example. 
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In Fig.3 we plot 3E  versus ε  of the asymptotic expansion (4) with (5)-(9) obtained 

by the LP method, where ε  starts from 0.5 and ends at 2.5 by a step size 0.05. When 

5.0>ε , the LP method is unacceptable because the maximum absolute error 3E  is 

larger than 21 and increases rapidly as ε  increases. For 5.2=ε , the error is as large as 

2824. 
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Fig.1 Order verification of the asymptotic expansion (4) obtained by the LP method 
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Fig.2 Order verification of the asymptotic expansion (10) obtained by the MLP method 

 

In Fig.4 we plot 3E  versus ε  of the asymptotic expansion (10) with (11)-(16) 

obtained by the MLP method, where the parameters are the same as above. Note that the 

maximum absolute error 3E  is only 0.074(corresponding relative error is 1.85%) for all 

ε  starting from 5.0  and ending at 5.2 .  
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Fig.3 Error of the expansion (4) obtained by the LP method for large parameter values of ε  
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Fig.4 Error of the expansion (10) obtained by the MLP method for large parameter values of ε  

 

So, for large parameter values of ε , the MLP method is valid whereas the LP method 

is invalid. 

 

5. CONCLUSIONS 

The asymptotic expansions of solutions of the Duffing equation obtained by the LP 

method and the MLP method are uniformly valid for small parameter values of ε . For 

large parameter values of ε , the MLP method is valid whereas the LP method is 

invalid. 
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