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Abstract-Mathematical analysis of  the  the flow field over the glycocalyx located on 

the endothelial cells (EC) inside cardiovascular system was investigated.  Two flow  

regions were considered. A core flow region which is located in the lumen  of the 

vessel.  The flow in this region is similar to Poiseuille flow seen inside the straight 

pipes. Flow region  through the glycocalyx is located near the lumen wall.  The flow in 

this region is considered as a flow through the porous media.  Solutions are found in 

both regions and wall shear stresses (WSS) and drag force are calculated. 
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1. INTRODUCTION 

 

Cardiovascular disease is the leading cause of death in the world.  Cardiovascular 

system consist of blood vessels.  Endothelial cells line inside the blood vessels.  The 
relation between the blood flow inside blood vessels and endothelial cells have been 

investigated for two decades.  The problem is the formation of the atherosclerosis which 

will cause the blockage of the blood vessels which can be the cause of the death for 

patients, [1].  Figure 1 shows the flow regions schematically.  Upper part shows the core 

flow region and lower part shows the porous flow region. #_  

Many applied problems in fluid mechanics, other areas of physics and mathematical 

biology were formulated as the mathematical models of partial differential equations [2 

- 4]. Moreover, fluid flow studies and the effect of the shear stress on the EC's were 

calculated [5 - 8], oncotic forces inside the vessels are calculated [9, 10]and also 

theoretical calculations of the flow inside microvessels were done, [11].  A model for 

transport across microvessel endothelium was developed to determine the forces and 

bending moments acting on the structure of the flow over EC [12].   

In this paper specific modeling of the fluid flow over the EC inside the arteries was 

performed.  Two regions were assumed, the flow which is close to EC was taken as 

flow through porous media and core flow region which is far from EC.  General 

formulation for the calculation of the velocities in both regions are solved.  The result of 

the solution will lead us to calculate the WSS which is assumed one of the most 

important factor causing the atherosclerosis formation.  
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2. PROBLEM DEFINITION 

 

Figure 1 shows the structure of the EC inside the vessels.  There is a layer of glycocalyx 

on top of the structure.  Proteins and extracellular matrix is located under it.  There are 

protein channels on the cell membrane.  Figure 2 shows the schematic of the capillary 

vessel.  Region which is close to the wall is called porous medium and the region which 

is in the center of the vessel is called as core flow.  Endothelial surface layer or 

glycocalyx has several roles: as a transport barrier, as a porous hydrodynamic interface 

in the motion of red and white cells in microvessel and as a mechanotransducer of fluid 

shearing stresses to the actin cortical cytoskeleton of the endothelial cell.  Critical flow 

regions such as turbulent region, low WSS regions were hypothesized on the formation 

of the fatty structure, atherosclerosis inside the vessel.  There is a biochemical signaling 

due to the flow over the glycocalyx inside the vessel. 

 

 
 

Figure 1. Sketch of endothelial surface level showing core protein arrangement and 

spacing of scattering centers along core proteins and their relationship to actin cortical 

cytoskeleton [1]. 

 

 

 

 

     

 

 

 

 

 

Figure 2. Schematic of the flow regions inside capillary vessels for modeling. 

 

3. ANALYTICAL SOLUTION OF THE FLOW FIELD INSIDE THE BLOOD 

VESSEL 

 

We can start the solution for the flow field inside the microvessel with the Navier 

Stokes equations in cyclindrical coordinates, Velocity is given as follows; 
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Assume fully developed, unidirectional flow in rigid tube 
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Equations inside the core region (1) and porous region (2) are given as follows; 
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where Uc is the velocity of the core flow and Ug is the velocity of the flow inside porous 

media. Equation (2) is also known as the Brinkman equation.   Drag force is given by 

equation (3)  
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Where Kp is Darcy permeabiality, describes how densely the proteoglycans are packed 

inside the porous medium.  To simplify the equations we can nondimensionalize the 

equations using the  following variables: 

 

U=U′u,  R=R′r,  Z= R′z,  P=P′p = (µ U′)/ R′ 

 

Where U
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 , R

'
 and P

' 
are the characteristic velocity, length and pressure 

Then the equations (1) and (2) become: 
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where 

pK

R′
=2α  

Boundary and matching conditions need the velocities and shear stress to match at the 

edge of the glycocalyx, no-slip condition at the endothelial cell membrane, ( r=l ) and 

symmetry in the center 
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solving for  uc  
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The pressure gradient is constant throughout the tube and integrating up twice and using 

a matching condition and a boundary condition we get: 
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solving for  ugwe can rewrite the Brinkman equation in the form: 

 

2222 )()( r
z

p
ururur grgrrg

∂

∂
=−+ α  

 

looks like an inhomogeneous Bessel equation and normal Bessel equation takes the 

form 
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it has a particular solution 
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still solving for  ug,  a glimpse into the solution process, we make a few approximations 
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Final solution equation for ug, using the boundary conditions, matching conditions, and 

the final solutions are given with equations (5) and (6); 
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We calculate the drag force over the glycocalyx inside the porous medium.  Fz force per 

volume, need force per length.  Darcy permeability and the volume fraction of the 

proteoglycans (c) are given by [9]: 
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For a regular group of glycocalyx, ∆ is the distance among the proteoglycans, a  is the 
protein radius.  Drag force is calculated from equation (7)   
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We can also calculate the WSS using equation (9). 
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Drag force coming onto the glycocalyx and the shear stress over the wall will give us 

how much stress is applied to the wall and the effect of it on the biochemical signaling 

through the cells.  Computational code is being written to understand the effect of 

different flow rates on the endothelial cells with different magnitudes of the WSS and 

drag forces. 

 

4. CONCLUSIONS 

 

The effect of the flow over the glycocalyx were investigated.  The flow equations inside 

the core flow and porous flow regions were established.  Boundary conditions in the 

center of the microvessel, at the edge of the glycocalyx and at the wall were applied and 

the solutions of the velocities were found for both core and porous regions under the 

steady flow conditions.  Drag forces and WSS were also calculated.  Low WSS can be 

considered one of the causes of the atherosclerosis formation and biochemical signal 

activation. A new computer code regarding the flow analysis over the endothelial cells 

has been written. In vivo studies together with the modeling studies will give more 

detailed understanding of the flow phenomena inside both regions.   

 

Acknowledgement-I would like to thank to Professor C. Forbes Dewey from 

Mechanical Engineering and Biological Sciences department of the Massacchusetts 

Institute of Technology (MIT) for their valuable discussion regarding the effect of the 

flow over endothelial cells and the mechanotransduction during my visit to MIT in the 

year of Summer 2005. 

 

5. REFERENCES 

 

1. Squire, J.M., Crew,M., Nneji, G., Neal G, Barry J. & Michel C , Quasi-Periodic 
substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for 

Molecular Filtering? J. Struc. Biol. 136, 239-255, 2001. 

2. M. Dehghan, On the numerical solution of the diffusion equation with a nonlocal 
boundary condition,  Mathematical Problems in Engineering, 2, 81-92, 2003. 

3. J. R. Cannon, S. Perez Esteva and J. van der Hoek, A Galerkin procedure for the 
diffiusion equation subject to the specification of mass, SIAM J. Numerical Analysis. 

24, no.3, 499-515, 1987. 

4. N. Gordeziani, P. Natani and P.E. Ricci, Finite-difference methods for solution of 
nonlocal boundary value problems, Computers and Mathematics with Applications, 

50, 1333-1344, 2005. 

5. C. C. Michel, Starling: the formulation of his hypothesis of microvascular fluid 
exchange and its significance after 100 years, Experimental Physiology, 82, 1-

30,1997. 

6. S. Weinbaum, Whitaker distinguished lecture: Models to solve mysteries in 
biomechanics at the cellular level; A new view of fiber matrix layers,  Annals of 



 

 

Mathematical Solution of the Flow Field over  Glycocalyx  

 

179 

Biomedical Engineering 26-4, 627-643, 1998. 

7. X. Hu and S. Weinbaum, A new view of Starling's hypothesis at the microstructural 
level, Microvascular Research,58, no.3, 281-304, 1999. 

8. X. Hu,R.H. Adamson, B. Liu, F.E. Curry and S. Weinbaum, Starling forces that 
oppose filtration after tissue oncotic pressure is increased, The American Journal of 

Physiology - Heart and Circulatory Physiology, 279, no.4, 1724-1736, 2000. 

9. J. Feng and S. Weinbaum, Lubrication theory in highly compressible porous media: 
the mechanics of skiing, from red cells to humans, Journal of Fluid Mechanics, 422, 

281-317, 2000. 

10. E.R. Damiano, The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red 
Blood Cells through Capillaries, Microvascular Research, 55, no.1, 77-91, 1998. 

11. B.M. Fu, S. Weinbaum, R.Y. Tsay and F.E. Curry, A  junction-orifice-fiber entrance 
layer model for capillary permeability - Application to frog mesenteric capillaries, 

Journal of Biomedical Engineering, 116, 502-513, 1994. 

12. P. Guo, A.M. Weinstein and S. Weinbaum, A hydrodynamic mechanosensory 
hypothesis for brush border microvilli, The American Journal of Physiology - Renal 

Physiology, 279,  no.4, 698-712, 2000. 

 

 

 

 

 


