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Abstract- An easily applicable algorithm to solve problems involving bulk-arrival 

queues with a breakdown of one of the heterogeneous servers in case of steady state is 

introduced. A Monte Carlo study for numerically finding the limiting distribution of the 

number in the system for the bulk arrival, multi-server queueing model (M[x]/EK/C; C-

1/FCFS) with heterogeneous servers is presented. The system consists of servers of 

varying efficiency. This paper presents multi-channel queue with Poisson arrivals, 

Erlangian service time distributions in which all servers have equal breakdown chance. 

Measures of system performance including mean queue length, mean waiting time, and 

blocking probability are reported. Numerical results are obtained by simulation of the 

entire system. Examples of extensive numerical results for certain measures of 

efficiency are presented in tabular and chart form. In all cases, the proposed method is 

computationally efficient, accurate and reliable for both high and low values of the 

model parameters. 
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1.INTRODUCTION 

 

 We discuss a multi-channel, first-come, first-served situation in which arrivals 

occur in groups or in bulk and the system is in one of two levels of operation. In one 

level of operation all C servers are available and in the other level only C-1 servers are 

available. The interruptions in the service process are due to breakdown of one of the 

servers, to scheduling policy, or to one of the servers leaving the system temporarily.  

Bulk arrival, multi-server queueing systems have been studied from different aspects 

(see Chaudhry and Briere [3], Chaudhry, et. al. [4], Chaudhry and Kim [5], Chanke [2], 

and Sultan, et. al. [1].) 

 This paper considers the multi-server Erlangian queueing system (M[x]/E k /C; 

C-1/FCFS) with heterogeneous servers. Such a system has the following features: 

Such a queue is considered with C heterogeneous servers. Only one of the servers can 

break down. When one of the servers breaks down, the system operates with the 

remaining (C-1) servers (system is in level-1). After the broken server is repaired and 

put back into service the system re-operates with C servers again (the system is in level-

2). Thus a system alternates between two modes of system operations. This is due to 

breakdown of one of the servers, to scheduling policy, or to one of the servers leaving 
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the system temporarily. Service is on a first come, first served basis. There is no limit on 

queue length. 

 The paper presents different numerical measures of the system performance such 

as the expected number of customers in the system and in the queue, the expected 

waiting time per customer in the system and in the queue, the blocking probability and 

the probability that no customers in the system.  

 The paper is organized in 5 sections.  Section 2 presents a description of the 

study design and introduces notation and basic assumptions for the model under study. 

Section 3 describes the procedure and steps used for the analysis of the system together 

with code and routines used. Section 4 discusses extensive Monte Carlo results obtained 

from analyzing the system. The results include different tables and graphs. Finally, 

section 5 concludes the paper. 

 

2. MODEL DESIGN AND NOTATION 

  

 The model under study is (M
[x]
/E k /C; C-1/FCFS) where groups of customers 

(bulk) arrive at random times with mean bulk arrival rate λ. The group size is namely 
positive Poisson distributed. The queueing system under study has heterogeneous 

servers where service time has an Erlang type k distribution. In analyzing such a model, 

it is convenient to consider the Erlang as being made up of k exponential phases, each 

with mean 1/ (kµ
S
). Our system alternates between two levels of system operations, this 

is due to breakdown of one of the servers. This means that only one server is allowed to 

breakdown randomly according to a discrete uniform distribution that assigns one of the 

servers to be out of service where the server breakdown has equal chance over all 

servers in the system. The mean time that the system operates with C servers and (C-1) 

servers is 1/α and 1/β respectively. 
 The queue discipline for groups is FCFS while the service discipline within the 

bulks is based on randomly choosing one of the customers mentioned earlier. The 

conditional probability of the customer waiting for d departures before his service 

commences given the state of the system n just before the arrival of the bulk is given by: 
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 Customers of a certain group are served randomly. If X is the size of a bulk then 

customer i, i =1,2,…,X has the same chance of joining service. In order to generate an 

equal chance to all customers in a given batch of size X, either a uniform assignment of 

the order in which they may be served is used or using a predefined permutation 

sequence. This permutation routine helps to recognize every customer in the batch.  

 Notation used for the model can be summarized by: 

C  : Number of parallel servers. 

λ   : Mean bulk arrival rate. 

µS        : Constant service rate of a server 

number S; 1≤S ≤C. 

µ   : Expected service rate of servers.  



 

 
 

Multi-Channel Bi-Level Heterogeneous Servers Bulk Arrival Queueing  

 

99

K   : The first phase of service. 

1    : The last phase of service. 

m  : The average bulk size. 

QL  : The average queue length. 

SW : The average waiting time per 

customer in the system. 

SL  : The average number of customers 

in the system. 

QW : The average waiting time per 

customer in the queue.  

Level-1: All C servers are available for 

serving the customers in this level. 

Level-2: All (C-1) servers are available for 

serving the customers in this level. 

iP,0    : The probability of having no 

customers in the system when the 

system is in level-i, i= 1,2. 

β    : Transition rate from level -1 to 

level-2. 

α    : Transition rate from level -2 to 

level-1. 

BP   : The blocking probability that 

defines the probability that all 

servers are busy. 

ρ   : The traffic intensity. 

N  : The number of groups. 

θ   : The parameter of the group size 

distribution. 

TOSC  TISC + ST 

WTQ  Waiting time of a customer in the 

queue. 

WTS  Waiting time of a customer in the 

system. 

TBS  The busy time for a server. 

CUMWTQ Cumulative waiting time in queue 

per customer. 

CUMWTS Cumulative waiting time in system 

per customer. 

TOB Departure time for a batch. 

 

3. PROCEDURE 
 

 The procedure for studying the previously discussed system can be described in 

the following steps:  

1- Generate 10000 interarrival times for 10000 different batches from exponential 

distribution with mean 1/λ with each batch size randomly generated from a positive 
Poisson distribution with parameter θ. 

2- The service times for each customer in the successive batches are generated from 

Erlang distribution with mean 1/µ
S
> 0; 1≤S ≤C for each server. The system 

alternates between two modes of operations with equal breakdown chance for each 

of the C servers, using an exponential distribution with mean 1/α and 1/β for the 
intervals of time in which the system operates in level-2 or level-1 successively. 

3- Determine the event time of breakdown and repair for each server.  

4- Determine the cumulative number of customers that enter the system as the sum of 

batch sizes that arrive to the system and determine the arrival time for each batch.  

5- An arriving batch finds the system in either level-1 or level-2. If the arrival time of a 

batch is greater than the event time of breakdown and less than the event time of 

repair, the system will be in level-1. While if the arrival time of a batch is greater 

than the event time of repair and less than the event time of breakdown, the system 

will be in level-2. 

6- Based on the system mode and the relation between the time of next batch arrival 

and the departure time of the previous batch, increment accordingly the number of 

batches for level-1 or level -2 by one. 

7- An arriving customer in batch will immediately start service if one of the servers is 

free or wait until any server becomes free and this continues until all customers in a 

given batch are served. 
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8- Calculate TOSC, WTQ, WTS, TBS, CUMWTQ, CUMWTS, and TOB. 

9- If a server is broken down during serving a certain customer, this customer will quit 

service and will start service at the first server available.  

10- This continues till 10000 batches are generated. 

11- The probability that the system is in level-i, i= 1,2 while there is no any customer in 

the system i,0P , the probability that no customers are in system 0P , and the 

blocking probability PB are calculated. 

12- Calculate 
QW ,

SW ,
QL , and sL . 

 

4. SIMULATION RESULTS AND PERFORMANCE ANALYSIS 

 

 Now, the results from the extensive Monte Carlo study described earlier will be 

presented and analyzed. The model performance is tested extensively for values of (ρ, 
C, X) with 0.1≤ρ≤0.9, 1≤C≤100 and batch size X≤100. Based on the methodology 
explained in the previous section, the input data includes the number of servers C, the 

number of batches N, the parameter of size of batches θ, mean service time 1/µ
S
 , 

1≤S≤C, mean interarrival time 1/λ, the mean time that the system operates with C 
servers 1/α and the mean time that the system operates with (C-1) servers 1/β. Different 
performance measures are calculated. These measures include LQ , LS , WQ , WS , P0 , 

and PB.. Two models are considered: 

 • In the first model the queueing model (M[x]/ E2 /5; 4/FCFS) is considered. 

 • In the second model the queueing model (M[x]/ M /3; 2/FCFS) is considered.  
 The first model assumes that the system operates initially with five 

heterogeneous servers (system is in level-1). When one of the servers is broken down, 

the system operates with four heterogeneous servers (system is in level-2). After the 

repair of the broken server and putting it back into service, the system re-operates with 

five heterogeneous servers again. Hence, the system alternates between two modes of 

system operations. The service time has Erlang type 2 distribution with parameter µS > 0, 

where µS is the service rate of server number S; 1≤S ≤C. The size of groups followed 

positive Poisson distribution with parameter θ >0. There is no limit on system capacity. 

FCFS is the queue discipline (first-come, first-served). 

 In order to carry out the extensive Monte Carlo experimentation different input 

values are needed. These input values are considered as the input parameters for the 

designed computer routine. The input parameters include 1/µ1, 1/µ2 ,1/µ3 ,1/µ4 ,1/µ5 ,1/λ, 1/α, 

1/β,C , N and θ.   

 Tables (1- 6) give different system performance measure variations with traffic 

intensities ρ = mλ/C µ  and the relative transition rate α/(α+β (see also [1] for more 

details). 

 Results from tables 1, 2, 3, and 4 are shown graphically in figures 1,2, 3, and 4 

respectively. For example, figure 1 indicates the relation between traffic intensity ρ and 

average number of customer in the queue LQ with the change of relative transition rate 

α/(α+β) denoted REL in the figure. 
 

 

 



 

 
 

Multi-Channel Bi-Level Heterogeneous Servers Bulk Arrival Queueing  

 

101

 

Table 1 
Average number in the queue                                                                                            

(Number of servers: 5) 

(Mean size of bulk=8)                                                                                           
αααα/(αααα+ββββ)                               

ρρρρ 0.00 0.250 0.500 0.750 1.00 

0.200 0.290 0.332 0.388 0.445 0.506 

0.300 0.748 0.952 1.134 1.351 1.483 

0.400 1.338 1.646 1.943 2.196 2.478 

0.500 2.160 3.074 3.468 4.029 4.611 

0.600 3.113 5.283 6.586 8.018 9.943 

0.700 4.446 9.367 12.395 16.663 27.132 

0.800 6.009 20.134 28.036 49.735 151.714 

 Fig1: ρ versus LQ for (θ=7.997309, m=8, C=5) 

Table 2 
The probability that no customers are in 

the system at the arrival batch 

(Mean size of bulk=8) 

(Number of servers: 5) 

αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 0.6979 0.6976  0.6960 0.6949 0.6943 

0.300 0.5887 0.5803  0.5680 0.5615 0.5494 

0.400 0.4788 0.4678  0.4620 0.4507 0.4482 

0.500 0.3872 0.3569  0.3489 0.3394 0.3244 

0.600 0.3121 0.2634  0.2484 0.2214  0.1970 

0.700 0.2451 0.1749  0.1537 0.1263 0.0926 

0.800 0.1852 0.1017  0.0792 0.0453  0.0100 

  Fig. 2: ρ versus P0 for (θ=7.997309, m=8, C=5) 
Table 3 

Average waiting time in the queue 
(Number of servers: 5) 

(Mean size of bulk=8)                                                                                 

                              αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200  1.452   1.659 1.937 2.248 2.519 

0.300  3.724   4.739 5.643 6.724 7.381 

0.400  6.660   8.219 9.669 10.929 12.335 

0.500 10.750  15.304 17.264 20.055 22.968 

0.600 15.495  26.296 32.783 39.909 49.494 

0.700 22.133  46.635 61.697 82.950 135.074 

0.800 29.909 100.225 139.564 247.627 756.348 

Fig. 3:ρ  versus WQ for (θ=7.997309, m=8, C=5) 
Table 4 

The probability that no servers 
are idle in the system 

(Mean size of bulk=8) 

(Number of servers: 5)                                                                               

 
αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.100 0.393 0.422 0.449 0.478 0.505 

0.200 0.450 0.477 0.507 0.535 0.562 

0.300 0.516 0.549 0.582 0.613 0.643 

0.400 0.578 0.614 0.641 0.669 0.695 

0.500 0.639 0.683 0.709 0.740 0.766 

0.600 0.691 0.752 0.783 0.817 0.851 

0.700 0.741 0.824 0.856 0.890 0.925 

0.800 0.789 0.895 0.923 0.958 0.992 

 

Fig. 4: ρ  versus PB for (θ=7.997309, m=8, C=5) 
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Table 5 
Average number in the system 

(Number of servers: 5) 

(Mean size of bulk=8) 
 

 

 Table 6 
Average waiting time in the system 

(Number of servers: 5) 

(Mean size of bulk=8) 

 

αααα/(αααα+ββββ)  αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00  

ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 1.133 1.163 1.221 1.274 1.344  0.200 5.665 5.815 6.106 6.43 6.692 

0.300 2.131 2.346 2.541 2.782 2.926  0.300 10.608 11.677 12.648 13.848 14.562 

0.400 3.234 3.515 3.798 4.033 4.311  0.400 16.099 17.553 18.903 20.076 21.461 

0.500 4.576 5.464 5.829 6.381 6.960  0.500 22.778 27.200 29.017 31.763 34.642 

0.600 5.991 8.179 9.485 10.939 12.887  0.600 29.819 40.714 47.215 54.449 64.147 

0.700 7.827 12.777 15.810 20.113 30.616  0.700 38.961 63.612 78.699 100.121 152.415 

0.800 9.895 24.040 31.929 53.663 155.650  0.800 49.256 119.663 158.943 267.185 775.969 

 

 The second model studies the case with heterogeneous servers (M
[x]
/ M /C; C-

1/FCFS) which is a special case of the model ((M
[x]
/ Ek /C; C-1/FCFS) with 

heterogeneous servers which occurs when K=1.  

 In this model, the system is assumed to operate initially with three 

heterogeneous servers (system is in level-2) and when one of the three servers is broken 

down, the system operates with two heterogeneous servers (system is in level-1). After 

the repair of the broken server and putting it back into service, the system re-operates 

with three heterogeneous servers again. Hence, the system alternates between two 

modes of system operations. The service time has Exponential distribution with 

parameter µ
S >0, where µS is the service rate of server number S, 1≤ S ≤ 3. The size of 

bulks followed positive Poisson distribution with parameter θ >0. There is no limit on 
system capacity. The first-come, first-served is the queue discipline. 

 For the second model, similar results in tables and graphs are given in tables 7–

10 and figures 5 – 8. 
 

 

Table 7 
Average number in the queue 

(Number of servers: 3) 
(Mean size of bulk=8) 

 
αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 0.542 0.672 0.789 0.931 1.039 

0.300 1.163 1.462 1.755 2.169 2.492 

0.400 1.964 2.552 3.158 3.836 4.658 

0.500 3.410 4.468 5.781 7.631 9.820 

0.600 5.361 7.771 11.369 18.150 33.619 

0.700 8.865 13.327 23.523 57.488 388.467 

0.800 15.686 29.520 64.754 1447.44 4525.67 

 

    Fig. 5: ρ versus LQ for (θ=7.997309, m=8, C=3) 
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 Table 8 
The probability that no customers are in 

the system at the arrival batch 

(Mean size of bulk = 8) 

(Number of servers: 3) 

 
αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 0.7533 0.7493 0.7359 0.7294 0.7262 

0.300 0.6339 0.6072 0.5957 0.5723 0.5576 

0.400 0.5290 0.4980 0.4790 0.4440 0.4201 

0.500 0.4211 0.3860 0.3504 0.3047 0.2647 

0.600 0.3317 0.2754 0.2252 0.1606 9.92E-02 

0.700 0.2420 0.1859 0.1244 4.94E-02 2.50E-03 

0.800 0.1567 9.66E-02 4.08E-02 7.00E-04 4.00E-04 

     

     Fig 6: ρ versus P0 for (θ=7.997309, m=8, C=3) 
 

 

 

Table 9 
Average waiting time in the queue 

(Number of servers: 3) 

(Mean size of bulk=8) 

 
αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 2.694 3.339 3.927 4.634 5.174 

0.300 5.788 7.279 8.738 10.796 12.406 

0.400 9.775 12.701 15.719 19.093 23.182 

0.500 16.974 22.239 28.776 37.985 48.877 

0.600 26.684 38.681 56.592 90.349 167.345 

0.700 44.128 66.34 117.129 286.194 1963.37 

0.800 78.078 146.965 322.494 7517.54 25851.3 

 
 

       Fig. 7: ρ versus WQ for (θ=7.997309, m=8, C=3) 

 
 

Table 10 
The probability that no servers 

are idle in the system 

(Mean size of bulk = 8) 

(Number of servers: 3) 

 
αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 0.65925 0.69048 0.72386 0.75583 0.78627 

0.300 0.70425 0.7388 0.76886 0.80216 0.83292 

0.400 0.74433 0.77958 0.80848 0.84226 0.87091 

0.500 0.79038 0.82322 0.85465 0.88773 0.91712 

0.600 0.83092 0.86901 0.90312 0.93840 0.96837 

0.700 0.87232 0.91029 0.94507 0.98028 0.99904 

0.800 0.91375 0.95173 0.98142 0.99976 0.99987 

 

   Fig. 8: ρ versus PB for (θ=7.997309, m=8, C=3) 
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6. CONCLUSION 

 

The final conclusion from the previous study shows that: -   

1- The increase of relative transition α/(α+β) has remarkable effect on the average 
number of customers in the queue and in the system, while the increase of the 

traffic intensity ρ has a big noticeable effect on a performance measures. (See 
tables 1, 7 and 5, 12).  

3- The average number of customers in the system and in the queue increases as the 

average group size increases. So the increase of relative transition α/(α+β) has 
noticeable effect on LQ and LS but not as well when the average group size is 

relatively close to the value of the number of servers. (See tables 1, 7 and 5, 12). 

1- The most effect on the average number of customers in the system and in the queue 

is happening when the traffic intensity ρ is very close to unity. The absence of one 
server affects the average number of customers as traffic intensity gets near the 

unity (heavy traffic). (See tables 1, 7 and 5, 12). 

5- The average waiting time in the queue and in the system is highly affected by the 

absence of one of the servers for both low and high traffic intensity. (See tables 3, 6 

and 9, 11). 

6- The probability of having no customers in the system P0 at an arrival batch i.e. the 

percentage of time the system is idle is not highly affected by the absence of one of 

the servers, but it decreases as the traffic intensity increases. (See tables 2 and 8). 

7- The probability that no servers are idle in the system PB is affected by the increase of 

traffic intensity, where it increases as the traffic intensity increases. So the blocking 

probability has remarkable effect resulting from absence of one of servers where it 

increases as the relative transition α/(α+β) increases. (See tables 4 and 10). 
8- The results show in tables 7 to 12 for the model (M

[x]
/ M /3; 2/FCFS) illustrate that 

the results with the absence of one server is much more noticeable than the results 

show in tables 1 to 6 for the model (M
[x]
/E k /5; 4/FCFS). Where, in the first model 

the service time has Exponential distribution and the number of servers is fewer 

than the number of servers in the second model. 

 

 

 

Table 11 
Average waiting time in the system 

(Number of servers: 3) 

(Mean size of bulk=8) 

 
αααα/(αααα+ββββ) ρρρρ 

0.00 0.250 0.500 0.750 1.00 

0.200 5.506 6.066 6.573 7.198 7.660 

0.300 10.208 11.619 13.013 14.996 16.543 

0.400 15.637 18.464 21.389 24.676 28.661 

0.500 24.415 29.593 36.056 45.198 56.015 

0.600 35.617 47.599 65.519 99.317 176.312 

0.700 54.565 76.746 127.544 296.645 1973.60 

0.800 89.928 158.698 334.146 7529.17 25862.8  

 

 

 

Table 12 
Average number in the system 

(Mean size of bulk=8) 

(Number of servers: 3) 

 
αααα/(αααα+ββββ) ρρρρ 

0.00   0.250   0.500 0.750   1.00 

0.200  1.106   1.219   1.320   1.446     1.539 

0.300  2.051   2.334   2.614   3.013     3.324 

0.400  3.142   3.709   4.297   4.957     5.758 

0.500  4.905   5.945   7.243   9.080   11.253 

0.600  7.155   9.563 13.163 19.951   35.420 

0.700 10.961 15.418 25.615 59.587 390.492 

0.800 18.067 31.877 67.094 1449.68 4527.70  
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9- The results show in tables 7 to 12 for the model (M
[x]
/M /3; 2/FCFS) illustrate that the 

results with heterogeneous servers and the absence of one servers is much more 

noticeable than the results for the model (M
[x]
/M/5; 4/FCFS) with homogeneous 

servers and increasing of mean of size of bulk which described in [1] (i.e. the 

performance measures for model (M
[x]
/M/3; 2/FCFS) with heterogeneous servers 

are noticeable highly affected than the model (M
[x]
/M/5; 4/FCFS) with 

homogeneous servers when the traffic intensity ρ is very close to unity and an 
absence of one server. 

 

Finally, this paper introduces an easily applicable algorithm to solve problems 

involving bulk-arrival queues with a breakdown of one of the heterogeneous server 

in case of steady state. This approach was preferred to producing large tables of exact 

results, varying the queueing parameters because of the endless list of possible 

combinations when applied to bulk queues and one of the servers break down. The 

performance measures are changed in response to the changes of the operating 

parameters. We documented the behavior of the system when one of the servers 

temporarily leaves the system with useful graphical representation to give the reader 

an opportunity to watch the system behavior over the traffic intensity and the relative 

transition rate. 
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