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Abstract– In this study, we have developed a platform which incorporates Artificial 
Neural Networks (ANNs) in simulating body dynamics of mobile ground vehicles (e.g. 
cars). This is a part of our research project in which we plan to provide a platform for 
educating the driver candidates in virtual environments: where the drivers can be 
educated fully in “Artificial Cities”. To start with, 6 different makes of cars with 
different engine properties has been simulated with the appropriate data provided by the 
manufacturers and rules of physics. A joystick steering wheel has been used to produce 
the necessary inputs for the ANN based physics engine. To train the network, Scaled 
Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a 
logistic sigmoid transfer function have been used. The statistical error levels are 
negligible. The Absolute Fraction of Variance (R2) values for both the training and test 
data are about 99.999% and the mean error value for both data group is lesser than 
0.5%. 
Keywords– Artificial Neural Networks, Driving Education, Car Simulation. 

 

1. INTRODUCTION 

Simulation is a powerful approach in educating people who are not acquainted with the 
real physical environment. Flight simulators are one of the most common simulation 
platforms used for this purpose. The idea of using similar systems for educating people 
to learn driving ground based vehicles is not new. However, due to its commercial 
nature it is hard to see any publications revealing the details of this matter. Using this 
approach, it is possible to use the simulation tools that help the pilots to be trained 
without endangering the planes. Similarly, driver candidates who have not used a car in 
a traffic as yet, maybe first trained by these simulation tools to get mastered in the 
traffic. 
In this study, to be able to quicken the calculations involved to find the responses of 
vehicles against actions of the drivers, an Artificial Neural Network (ANN) based 
mechanism has been developed. For the sake of realism, a car simulation program must 
use a steering wheel and pedals hardware. Thus, candidate will use a similar hardware 
that exists in real automobiles. In addition, a physics engine that receives the data from 
steering wheel and generates the behavior of a car is needed. 
The data set obtained from the physics engine is for several cars under different 
situations is recorded to be used to train and test the network. The physics engine is a 
function which performs the physical principles and car dynamics on the data flow from 
the steering wheel and pedals hardware and generates outputs like speed, engine 
rotation per minute and advanced distance.  
 
The physics engine requires heavy calculations that in turn effects the amount of time 
required for the calculations to find the new position of the vehicle. Therefore, from the 
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programming point of view, the ability to perform real time image generation is limited. 
To overcome this, an ANN based mechanism is incorporated into the physics engine. 
The input data was supplied by the pedals hardware, which originally depends on the 
specifications of the simulated cars and the output is the speed, rotation of the engine in 
rpm, and the traveled distance based on x and y values. 
The algorithmic mechanism provided in this study, can be used as a base to develop 
even faster (i.e. in the case of the platforms requiring such fast responses) games 
involving car simulations and platforms developed for traffic educations and finally 
military applications such as tank simulators. To calculate rigid body dynamics 
common formulas given in [1] has been used.  

2. OPERATING CAR PHYSICS 

The first force that affects the car when driving on a straight road is the Traction Force 
(TF). It is generated by the engine and transmitted to the wheels. While the torque 
delivered to wheels turns the wheels forward on the surface of the road, a frictional 
resistance occurs between the wheels and the road surface. This resistance operates 
opposite to movement direction of the car and called as Rolling Resistance (RR). 
Another important force on the car which appears is the friction between the car and the 
flow of air. Therefore the total force affecting the car is the sum of traction force that 
push the car forward and opposite forces, namely the RR and Air Resistance (AR). 
When the sum of RR and AR becomes equal to TF, then the net force on the car reaches 
to zero. In this case either the car moves with a constant velocity or it stops. If the TF is 
bigger than the other opposite forces, then the car accelerates. The formulae appearing 
in the proceeding part are mainly taken from [1, 2]. According to second law of Newton 
the acceleration of the car is: 

M

F
a =                          (1) 

where M is weight of the car, F is net force on the car. The velocity of the car (v) is 
found by integrating the acceleration of the car over the time:  

v = v0 + dt × a          (2) 

where the dt is a time interval that subsequent calls of the function which performs the 
car physics engine, in the same way the traveled distance can be found by integrating 
the velocity over the time as given by equation: 

p = p0 + dt × v          (3) 

If the physics engine function is called ten times in one second then dt is equal to 100 
milliseconds. This time interval is multiplied by the calculated instant acceleration and 
added to the velocity which is calculated in previous time interval, and then the instant 
velocity is found. If the car was stationary at first and begins to move afterwards, then 
the previous velocity is zero. And if the instant acceleration is negative then the velocity 
will decrease. The net force on the car is calculated by summing the TF, RR and the AR. 
The TF is denoted as Ftraction while AF as Fdrag and RR as Frr. 

Fnet = Ftraction - Fdrag + Frr         (4) 
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The TF of an engine is different for each different cars and they generates different 
amount of torque for each different speed of engine. So each engine has its own torque 
and power curve. This curve gives the information about amount of torque and power 
delivered by the engine at a given speed of engine. Engine speed is measured by the 
number of axle rotation per minute (rpm). The RR is expressed as in the Equation 5. 
Where the Crr is a constant and given as 13 for the most commonly used radial wheels. 
As the equation illustrates, the RR is directly proportional to the velocity: 

Frr = - Crr × v           (5) 

The AR is expressed in equation 6, where the Cd represents the frictional coefficient. 
This constant depends on the shape of the car and determined by the manufacturers after 
wind tunnel tests. A is the frontal area of the car and is approximately 2.2 m2 for many 
of the cars. Rho gives the density of air and which is nearly 1.29 kg/m3. The equation 
includes the square of the velocity. Therefore, increases in the speed causes the air 
resistance to increase more dramatically. 

Fdrag = 0.5 × Cd × A × Rho × v
2        (6) 

Until the engine torque is delivered to the wheels it passes the gear and the differential 
of the car. These mechanics multiplies the torque comes from engine by a factor of 
depending on the mechanics involved. Each car has different mechanical properties –
listed in Table 1 for the cars involved in the simulations- that effect the relevant 
calculations. When passing these mechanical sections some of the produced power is 
lost. This is called as transmission efficiency. In Equation 7, Tengine denotes the torque of 
the engine at a given rpm. Where xg is the gear ratio, xd is differential ratio, n is the 
transmission efficiency and Rw denotes the wheel radius. 

Ftraction = Tengine × xg × xd × n /Rw        (7) 

Table 1. Car properties provided by the manufacturers 

 
By changing the gear of the car, gear ratio is changed and the torque delivered from 
engine reaches to the wheels by times represented by this ratio. Increases in the gear 
cause decrease in gear ratio. This means that increases in the gear results a decrease at 
the transferred torque [1, 2]. 

3. THE DEVELOPED APPLICATION 

The program gets the automobile specific data from a file which includes the data 
corresponding to a number of cars. The data consist of gear ratios, differential ratio, 
transmission efficiency, wheel size, car weight, frictional coefficient Cd and the 
maximum torque of the car. Using this data the program simulates different cars. 

Transmission Rate Car 
type G1 G2 G3 G4 G5 

xd n 
Rw 

(inch) 
Weight 
(kg) Cd 

Torque 
(Nm) 

Engine 
Speed 

Megane 3.73 2.0 1.32 0.97 0.79 3.87 0.8 14 1075 0.3 137 4000 
Civic 3.46 1.87 1.24 0.91 0.76 4.11 0.8 14 1096 0.3 152 4300 
Focus 3.58 1.93 1.32 0.95 0.76 3.82 0.8 14 1140 0.3 145 4000 
Marea 3.91 2.16 1.48 1.12 0.89 3.81 0.8 14 1140 0.3 145 4000 
Astra 3.73 2.14 1.41 1.12 0.89 3.74 0.8 15 1062 0.3 150 3600 
Accent 3.61 2.05 1.37 0.97 0.78 4.05 0.75 13 946 0.3 136 3000 
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Initially we have included six different brands with different engine properties. 
Including more cars in this file shall give us the opportunity to simulate more cars. 
 
The developed application window is shown in Figure 2. First set of fields are used to 
display the angle of steering wheel which is turned and the degree of pedals that are 
pressed. The electronical details of such peripherals which communicate with a PC may 
be found in [3]. The maximum angle steering wheel turns to the left or right side is 110 
degrees and the maximum degree that the pedals pressed are 100 degrees. Pressing or 
releasing the buttons on the steering wheel is displayed in the second set of fields. The 
unprocessed data that comes from the steering wheel and pedals can be seen in the third 
field set. Forces on the car and the outputs of physics engine are displayed at fourth and 
fifth set of fields respectively. 

 
Figure 2. Snapshot of the Physics Engine program 

This program runs as server side and graphics engine will run as client side. After 
connecting to the server, the client will get the information such as the instant speed of 
the car, rpm of the engine and x, y coordinates of the vehicle in the map. Since the 
graphics engine is not complete yet, to see the communication of the two programs, a 
temporary client application to resemble the graphics engine is developed. This 
application connects to the server which performs the physics engine and listens to the 
outputs coming from it. Temporary client application lists the incoming data in a field 
as can be seen in Figure 3. The client can send information to the server by pressing to 
the OK button. Physics engine sends instant speed of the car, instant value of rpm, 
distance that is advanced on the y and x axis to the client program with a “|” pipe 
character between each data. Each set of data that is send, once a time is displayed at the 
client side in one line and the following set is displayed in the next line. To send a data 
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in backward direction, (i.e. from client to server) a message is written to a smaller field 
in the client application and the OK button pressed. This message will be seen to the 
server in a message box. 
3.1 The Performance of Physics Engine 

To test the performance of physics engine generated outputs are compared by with real 
life values of simulated cars. Acceleration values from 0(zero) to 50 km/h, 100 km/h 
and 130 km/h are gathered from various sources such as car hand books, with the 
technical information like gear, differential ratios, car weight and so on. These technical 
values are written to the file which physics engine reads from to perform simulation. 
This information collection and performance test process is made for six different cars.  
 

 
Figure 3. Snapshot of the client application (i.e. the graphics engine) 

Real life values of acceleration time interval from 0 to 50 km/h, 0 to 100 km/h, 0 to 130 
km/h and simulator results for each car are compared. Such a comparison for Honda 
Civic 1.6 LS is shown in Table 2. Maximum deviation ratio for the physics engine is 
about 6.3%. This amount is generally measured in milliseconds and the difference of a 
few milliseconds will not disturb the simulator user. The reason for the deviation is the 
lack of detailed technical specifications used for the cars. For example in some cases the 
values of Cd, the transmission efficiency and frontal area of the cars were hard to obtain, 
and in such cases approximate values are used, which in turn causes the deviation listed. 
 

Table 2. Acceleration and test values for Honda Civic 1.6 LS 
 Values in car magazine Program generated value Deviation ratio 
0-50 km/h 3.4 s 3.2 s 5.8% 
0-100 km/h 10.3 s 10.0 s 2.9% 
0-130 km/h 17.4 s 18.5 s 6.3% 
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4. ARTIFICIAL NEURAL NETWORKS AND PREPARATION OF DATA 

Our biological nervous system is simulated to solve complex functions in various 
applications. The ANNs are based on several nodes that are connected to each other. 
From the operational point-of-view, such a network operates as a black box: one side is 
used for inputs while the other side provides the required outputs. For this a training 
session is needed [4-11]. Several transfer functions [5-11] can be used to calculate 
outputs using normalized input values appropriately weighted. Fundamentally, there are 
two ANN learning models: supervised and unsupervised learning [6-11]. In this 
application, we have used supervised learning in which the network is presented with 
the inputs corresponding to the cars, along with the target outputs together with adjusted 
weighting.  
 
One of the widely used learning-algorithms is the back-propagation algorithm. It has 
been used with a single hidden layer improved with numerical optimization techniques, 
namely: Scaled Conjugate Gradient (SCG), and Levenberg-Marquardt (LM) [7-11]. 
Inputs and outputs have been normalized in the range of (0-1). Neurons in the input 
layer have no transfer function, while in the other layers a logistic sigmoid (logsig) 
transfer function has been used and expressed as: 

ze
zf

−+
=
1

1
)(                      (8) 

where the z is the weighted sum of the input. In order to train an artificial neural 
network, the experimental results have been used. The physical engine is experimented 
with each car to produce 1874 data outputs. This data is used for training the network 
while the remaining 40 are used for testing. At the input layer 10 variables are used 
namely: the acceleration time (T), car weight (M), wheel radius (Rw), friction (Cd), gear 
(G), gear ratio (xg), differential ratio (xd), air resistance (AR), rotation force (RR), and 
traction force (TF) while the output is the velocity of the car (v).  
The computer program has been developed under the MATLAB. In the training session, 
we have used 3 different numbers of neurons (i.e. 6, 7, 8) in single hidden layer, for 
both SCG and LM. The test data is selected in equal numbers for each gear for each car 
for random acceleration times. The statistical methods of Root Mean Square error 
(RMS), R2, and mean % error values (MAPE) have been used for making comparisons. 
Figure 4 shows the one single hidden layer ANN architecture used in our application.  

5. RESULTS 

Table 3 summarizes statistical values corresponding to both the test data and training 
data with the predictions obtained from different learning algorithms –the LM and 
SCG- and varying hidden number of neurons. The LM algorithm with 7 neurons has 
produced the best results. The MAPE level in this algorithm is 0.459% in training and 
0.504% in testing, R2   values are 0.99% both for the training and testing and the RMS 
value is 0.286807 in the training and 0.3025 in the testing sessions. The results with the 
SCG (6 hidden numbers) produced maximum mean error percentages of 1.135% and 
0.658% for training and testing respectively. Even these values are within the acceptable 
range considering the possible acceptable error ratio for the application. 
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Figure 4. The ANN architecture used in the simulation 
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Table 3. Statistical values of predictions 
 SCG6 SCG7 SCG8 LM6 LM7 LM8 

RMS 0.434669 0.355286 0.413724 0.289263 0.286807 0.331906 
R

2 0.999985 0.999990 0.999987 0.999994 0.999994 0.999992 
MAPE 1.135873 0.854760 1.132149 0.482616 0.459997 0.771396 
RMS-test 0.438950 0.362373 0.400230 0.294417 0.302500 0.348332 
R

2
-test 0.999976 0.999984 0.999980 0.999989 0.999989 0.999985 

MAPE-Test 0.658459 0.575760 0.639169 0.480847 0.504329 0.466177 

 
Figure 5 shows the results corresponding to test data while Figure 6 corresponds to the 
same for the both data. As the figures illustrate the actual and predicted velocity values 
are very close to each other. 

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Test pattern

V
e
lo
c
it
y
 (
m
/s
)

Actual Predicted

 
Figure 5. The actual and predicted values of velocity for the test data 
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Figure 6. The actual and predicted values of velocity for the test and training data 
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The usage of the ANN system is often limited for standalone applications. For example 
we are considering several calculations which may be involved for finding the position 
of a mobile vehicle in a graphics based application. This naturally involves the 
calculations need to be done for each individual vehicle (i.e. apart from the 3D graphical 
calculations needed for the application). To give the system the ability to use the results 
produced by the ANN the following formulae have been extracted from the ANN 
system (using LM algorithm with 7 hidden neurons) makes the predictions easily 
calculatable and therefore removing the need to use the whole standalone ANN 
platform. As it may be noticed the number of arithmetical calculations involved in these 
formulae are much lesser then the ones needed for normal calculations (i.e. formulas) 
listed through Equation 1 to Equation 7. Table 4 provides the weights of neurons found 
in between the input and hidden layers. While the coefficients used in Equation 9 
represent the weights between the hidden and output layers. 

1.0795)  F7 6.7879  F6 6.7632- F5 5.9185 -F4 0.0119  F3 0.0748- F2 0.0302- F1 .89081(e1

1
v

+++−+
=   (9) 

 
Table 4. The weights between input layer and hidden layer for LM 7 

Fi=C1×T+C2×M+C3×Rw +C4×Cd +C5×G+C6×xg+C7×xd+C8×AR+C9×RR+C10×TF+C11  

 

i C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

1 -2.6294 -1.4131 1.9751 1.4476 2.7580 0.9896 -0.4088 -0.1203 7.1407 -1.3984 1.7046 

2 -2.1380 -6.0312 0.7643 0.7064 1.0261 -4.3036 -2.3145 -0.5577 1.1799 0.6399 1.1506 

3 2.5801 -2.3586 -1.7249 2.3032 -3.3014 -3.2146 -0.3875 1.4616 -1.2692 -4.4904 7.7797 

4 -6.5763 -1.2094 -0.7444 0.6374 1.7297 -4.0540 3.2068 -5.6949 2.7562 -0.3215 5.7050 

5 0.0115 0.0155 0.0241 -0.3266 0.0271 0.0593 0.0075 -0.0739 -2.2789 -0.0143 1.2095 

6 -0.0581 -0.0156 0.1237 -4.1748 -0.0378 0.1499 0.0221 -4.2403 -0.8385 -0.2209 7.7376 

7 2.4736 0.3210 -1.5335 0.0607 -0.3202 -1.0862 -0.0167 -2.4074 9.2423 1.1011 1.6001 

 
The equation in Table 4 is dependent on the inputs of the network. When using this 
equation, the input values are normalized by using the Equation 10 was used: 

1.0
N%N%

N%N%
8.0Nor

minmax

min

N% +








−

−
×=                (10) 

where %Nmin, are %Nmax are minimum and maximum input values of all related data, 
%N is the value to be normalized. But, Equation 10 is not used for wheel radius and 
friction values because they are between 0 and 1. %Nmin, are %Nmax values are given in 
Table 5. 
 

Table 5. Maximum and minimum values for normalize used in Equation 10 
 T M G xg xd AR RR TF v 

Nmax 40.9 1140 4 3.91 4.11 635.33 458.5 4862.84 149 
Nmin 0.1 946 1 0.97 3.74 0.06 4.32 1213.53 1 

5. CONCLUSIONS 

This study presents a mechanism which incorporates the use of artificial neural 
networks in simulations of several different cars with different properties successfully. 
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It also provides a mechanism to remove the need to use the ANN system as a standalone 
platform. The results also show that the predictions made by the ANN can safely 
replace the physics engine which has been simulated. This in turn reduces the number of 
calculations involved to determine the positions of the cars which in turn contributes by 
providing extra processor time for the calculations of real time graphical images. We 
believe that this system can be further developed to include more cars and other possible 
ground vehicles that are desired to be simulated. The presented study does not have a 
graphical interface, so it at present does not yet give the impression of going on the road 
in traffic like computer games or car simulators. However, this study is the outset of a 
whole platform. Further studies including the development of graphical interface is still 
going on. This will give users the opportunity of drive in a virtual city and apply all the 
traffic rules by improving the graphical part of the project and with the integration of 
these two physics and graphics parts. It will evaluate the user if driver candidate violates 
a traffic rule with a warning. Performance tests shows that physics engine runs 
satisfactory on the movement of straight line but it needs some enhancements about 
going on the crooked road. 
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