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Abstract- The manufacture of parts made of metal sheet often includes two successive 

processes: the cutting process at which a guillotine shear cuts the sheet into strips, and 

the punching process at which a stamping press punches out the blanks from the strips. 

This paper presents an algorithm for generating optimal two-staged cutting patterns of 

strips for the cutting process. At the first stage the sheet is divided into segments with 

parallel cuts. Each segment contains strips with the same length and direction. The 

segments are cut into strips at the second stage. The algorithm calls a recursion function 

to determine the optimal strip layouts on segments of various lengths, and calls another 

recursion function to optimally arrange the segments in the sheet, so that the value of 

the pattern reaches maximum. The computational results indicate that the algorithm is 

efficient both in computation time and in material usage. 
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1. INTRODUCTION 

A factory in the sheet metal industry may consume thousands of tons of metal sheet 

in a year to make products. The manufacturing process of parts made of metal sheet 

often includes two successive stages: the cutting stage and the punching stage. At the 

cutting stage, a guillotine shear divides the sheet into strips with orthogonal cuts. Each 

strip contains blanks of the same type. Strips of different blank types can appear in a 

sheet. At the punching stage, a stamping press punches out the blanks from the strips. 

Typically, a strip is fed into a stamping press that punches out a blank with each stroke, 

feeds the strip forward, and punches out the next blank. The blank layout on the strip 

was determined at the tooling design stage. It cannot be changed once the tooling is 

built. At the cutting stage, the blank layouts on strips are taken as known. Strips of 

different blank types may have different widths. Nesting strips of different widths in a 

cutting pattern can improve material usage at this stage. 

The following parameters characterize the strips of a blank type: The initial step, the 

succeeding step, and the strip width. Figure 1a shows a strip with initial step 100, 

succeeding step 65, and strip width 229. The initial step is the minimum strip length to 

hold the first blank. The succeeding step is the length increased to hold one additional 

blank. Figure 1b shows a strip equivalent to that in Figure 1a. Equivalent strips can be 

used in generating cutting patterns at the cutting stage. That is to say, a strip of a blank 

type can be taken as consisting of rectangular blanks of at most two sizes, where the 

length of the first blank is longer than or equal to that of the others. The strips in Figure 

1 will be referred to as punched strips, to differentiate them from other types of strips 
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used in the literature. 

       

(a) (b) 

Figure 1. Strips. (a) A strip. (b) A equivalent strip. 

The unconstrained two-dimensional cutting problem of strips (UTDC for short) 

discussed can be formally stated as: m  types of strips are to be cut from stock sheet 

WL×  with a guillotine shear. For the i th strip, mi ,,1K= , the initial step is ia , the 

succeeding step is ib , the strip width is iw , and the value of a blank is ic . Both the 

sheet size and the strip parameters are positive integers, and there is no constraint on the 

numbers of blanks appearing in a cutting pattern. The task is to generate the cutting 

pattern that has the maximum value, which is equal to the sum of the values of the 

blanks included. Assume that G  is a cutting pattern, and ix  is the number of the i th 

blank type appearing in this pattern. The mathematic model for the UTDC is: 

 
∑ =

=
m

i iixcz
1

max ; ..ts  G  is a feasible cutting pattern for the cutting stage (1) 

The UTDC is interesting for that it is closely related to the two-dimensional cutting 

stock problem of strips (TDCS for short). The TDCS is the problem of cutting all 

required numbers of blanks of different types from a set of rectangular sheets at 

minimum sheet cost. A solution of the TDCS consists of several cutting patterns, each 

of which can be generated by an algorithm for the UTDC. The linear programming (LP) 

approach have been used by many authors to solve cutting stock problems, where the 

blanks can be of any shape from regular to irregular [1-2]. It certainly can also be used 

to solve the TDCS. Starting from an initial solution, the LP approach can solve the 

TDCS according to the following steps:  

Step 1. Determine ic , the current value of a blank of the i th type, mi ,,1K= , from 

the current solution. 

Step 2. Use an algorithm for the UTDC to solve Model (1) to obtain pattern G . Go 

to Step 4 if pattern G  has a value not larger than that of the sheet used. 

Step 3. Replace a pattern in the current solution with pattern G . Go to Step 1. 

Step 4. Output the solution. 

The LP approach solves the TDCS through iteration consisting of steps 1 to 3. A 

large number of UTDC must be solved before the LP approach finds a solution close to 

optimal. 
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Among the papers dealing with two-dimensional cutting problems, the number of 

those that use strips in generating cutting patterns is relatively small. Some authors used 

strips in generating cutting patterns for rectangular blanks [3-4], where both general and 

uniform strips are used. A general strip contains blanks of different sizes. The width of 

the blanks in a uniform strip is the same, and the lengths of them may be different. Both 

general and uniform strips differ from the punched strips. References [2] and [5] 

presented algorithms for generating cutting patterns of punched strips. The proposed 

cutting patterns are a subset of the two-staged patterns proposed in this paper. The 

techniques used in the above papers cannot be directly used for generating good cutting 

patterns of punched strips. 

This paper proposes the application of two-staged cutting patterns for punched strips, 

and presents an algorithm for them. Both the strip layouts on the segments and the 

segment layout on the sheet are determined recursively. The algorithm considers all 

possible segment lengths implicitly, and skips non-promising strips in generating strip 

layout for each segment. Different versions of the algorithm are tested through 

experimental computation. The results indicate that the algorithm is efficient both in 

material usage and in computation time. Finally, solution to an example is given. 

2. TWO-STAGED PATTERNS 

Figure 2 shows the sketches of the proposed two-staged patterns. A pattern is an 

X-pattern if the cuts dividing the sheet into segments are vertical; otherwise it is a 

Y-pattern. Each segment contains strips in the same direction, which is denoted by the 

arrow in the segment. A segment containing X-strips (horizontal strips) is an X-segment, 

and that consisting of Y-strips (vertical strips) is a Y-segment. 

              

(a) (b)  

Figure 2. Two-staged patterns. (a) An X-pattern of 4 segments. (b) A Y-pattern of 3 segments 

Figure 3 shows two two-staged patterns, where the number in a strip denotes the 

blank type. The X-pattern in Figure 3a includes three segments. The first segment is a 

Y-segment consisting of two Y-strips. The other two segments are X-segments. The 

Y-pattern in Figure 3b contains two Y-segments. 
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(a) (b) 

Figure 3. Two-staged patterns. (a) An X-pattern of 3 segments. (b) A Y-pattern of 2 segments. 

3. THE SEGMENT LENGTHS THAT SHOULD BE CONSIDERED 

To facilitate presentation, the algorithm will be described only for X-patterns, which 

can be easily extended to deal with Y-patterns. 

3.1 Some concepts 

Definition 1. Layouts and patterns.  

A layout denotes the arrangement of strips on a segment, and a pattern denotes the 

arrangement of segments on a sheet. 

Definition 2. Directed layouts 

For a directed layout the strip direction in a segment is fixed. Assume that ),( yxF  

is the value of the optimal directed layout on segment yx×  or xy× , where the strip 

direction is along length x . For segment YX × , the optimal value is ),( YXF  when 

the segment is an X-segment; it is ),( XYF  when the segment is a Y-segment. 

Definition 3. Normal segment lengths for directed layouts 

Normal segment lengths are measured along the strip direction. They are the exact 

lengths of the strips that contain integral steps. For the strips of blank type i , let kix ,  

be the k th normal length, then 

iiki bkax )1(, −+= , ]/)int[(,,1 ii baLk −= K , mi ,,1K=  

Let XP  be the set of normal lengths of all blank types. Add 0, W  and L  to this 

set. Arrange the elements in increasing order of their values, namely },,{ 1 Mpp K=XP , 

01 =p , 1+< ii pp  for Mi <≤1 , and LpM = . 

Normal segment lengths have the following property: Assume that )(xp  is the 

maximum normal length not larger than x , then ]),([),( yxpFyxF = . The reason can 

be interpreted as follows. The length of the strips in segment yx×  is x . If x  is not a 

normal length, it is not a length that can be occupied by integral steps of any blank type. 

Therefore, shortening it to )(xp  will not change the number of blanks in each strip. As 

a result, the value of segment yxp ×)(  is the same as that of segment yx× . 

Definition 4. Normal segment widths for directed layouts 

Normal segment widths are measured in the direction perpendicular to the strip 

direction. They are the exact widths occupied by integral strips. Assume that y  is a 
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normal width, then: 

∑ =
=

m

i iiwzy
1

, iz  non-negative integers, mi ≤≤1 , Wy ≤≤0 . 

Let Q  be the set of normal widths. Add 0 and W  to this set. Arrange the elements 

in increasing order of their values, namely },,{ 1 Nqq K=Q , 01 =q , 1+< ii qq  for 

Ni <≤1 , and WqN = . 

Normal segment widths have the following property: Assume that )(yq  is the 

maximum normal width not larger than y , then )](,[),( yqxFyxF = . The reason can 

be interpreted in a similarly way to that for normal lengths. 

3.2 The segment lengths that should be considered 

The lengths of the segments in an X-pattern are measured horizontally. Assume that 

G  is an optimal X-pattern and contains X-segment Wx× . From Definition 3, 

replacing it with X-segment Wxp ×)(  will not change the pattern value, i.e., there 

exists an optimal pattern, where the lengths of the X-segments all belong to set XP . 

Assume that pattern G  contains Y-segment Wx× . From Definition 4, replacing it 

with Y-segment Wxq ×)(  will not change the value of the pattern. Furthermore, 

assume that the number of Y-strips in segment Wxq ×)(  is n . This segment can be 

taken as consisting of n  Y-segments, each of which contains only one Y-strip. That is 

to say, there exists an optimal pattern, where each Y-segment contains only one strip. 

Therefore, the set of Y-segment lengths that should be considered is },,{ 1 mww K=YP . 

Assume that P  is the set of segment lengths that should be considered in searching 

for the optimal X-pattern, then YX PPP ∪=  or },,,,{ 1 mMM ppp
+

= KKP , where 

iiM wp =
+

, mi ,,1K= . Usually mM +  is much more smaller than L . Considering 

only the segment lengths that belong to P  can shorten the computation time. 

4. THE RECURSION FUNCTIONS 

4.1 The recursion function for the optimal strip layout on a segment 

Assume that iwx×  is a strip of blank type i , ),( xin  is the number of blanks in the 

strip, and ),( xiv  is the value of the strip, then 

 0),( =xin  for iax < ; ]/)int[(1),( ii baxxin −+=  for iax ≥  

),(),( xincxiv i=  
(2) 

The optimal directed strip layout on segment yx×  is recursively determined as: 

}0|),(),(max{),( ≥−−+= ii wywyxFxivyxF ; 0),( =yxF  for 0=y  

Let ),SegRec(),( yxyxF = , where function ),SegRec( yx  returns the value of the 

optimal directed strip layout on rectangle yx× , with the strip direction being along the 

side of length x . Initially let 1),( −=yxF  for XP∈x  and Q∈y . The steps of 

),SegRec( yx  are: 

Step 1. Let )(yqy = . Go to Step 7 if 0),( ≥yxF . Let ),( yxF =0 and go to Step 7 if 
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0=y . 

Step 2. Let 0),( =yxF . Let 1=i . 

Step 3. Let iwyy −=1 . Go to Step 6 if 01 <y . 

Step 4. Let ),SegRec(),( 1yxxivu += . Go to Step 6 if ),( yxFu ≤ . 

Step 5. Let uyxF =),( . 

Step 6. Let 1+= ii . Go to Step 3 if mi ≤ ; otherwise go to Step 7. 

Step 7. Return ),( yxF . 

The recursion is terminated in the following cases: (1) In Step 1 when 0=y ; (2) In 

Step 1 when 0),( ≥yxF , for that the solution to segment yx×  has already been 

known; and (3) In Step 6 when all strips have been considered, namely when mi > .  

4.2 The recursion function for the optimal pattern 

Recall that only the segment lengths that belong to set P  should be considered. 

Segment Wpi ×  is an X-segment when Mi ≤ . It is a Y-segment containing only one 

strip when mMiM +≤≤+1 . Assume that )(iU  is the value of segment Wpi × , 

mMi += ,,1K , )(xE  is the value of the optimal pattern on partial sheet Wx× , then 

}0|)()(max{)( ≥−−+= ii pxpxEiUxE ; 0)( =xE  for 0≤x . 

Let )PatRec()( xxE = , where function )PatRec(x  returns the value of the optimal 

pattern on partial sheet Wx× . Initially let 0)0( =E  and 1)( −=xE  for Lx ≤≤1 . 

The steps of )PatRec(x  are: 

Step 1. Go to Step 7 if 0)( ≥xE . 

Step 2. Let 0)( =xE  and 1=i . 

Step 3. Go to Step 6 if ipx < . 

Step 4. Let )()( ipxEiUu −+= . Go to Step 6 if )(xEu ≤ . 

Step 5. Let uxE =)( . 

Step 6. Let 1+= ii . Go to Step 3 if mMi +≤ ; otherwise go to Step 7. 

Step 7. Return )(xE . 

5. THE ALGORITHM 

Assume that the value of the optimal X-pattern is XV , the value of the optimal 

Y-pattern is YV , and the value of the global optimal pattern is s *V , then 

),max(*

YX VVV = . This section presents the algorithm for determining XV . It can be 

easily adapted for determining YV . Four versions of the algorithm will be presented.  

5.1 The basic version (Version A1) 

Version A1 consists of the following steps: 

Step 1. Let },,1,0{ LK=XP , },1,0{ WK=Q , and },,,,,1,0{ 1 mwwL KK=P . The 

number of elements in XP  is 1+= LM , and that in Q  is 1+=WN . 

Step 2. From Equation (2), obtain the strip values ),( xiv  for XP∈x , mi ,,1K= . 

Step 3. Let 1),( −=yxF  for XP∈x  and Q∈y . Let 0)0( =E , and 1)( −=xE  
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for Lx ≤≤1 . 

Step 3. Let ),SegRec()( WpiU i=  for Mi ≤≤1 . 

Step 4. Let ),()( WiviU =  for mMMi ++= ,,1K . 

Step 5. Let )PatRec(LVX = . 

5.2 The version based on normal lengths and widths (Version A2) 

The steps of Version A2 are the same as those of A1 except Step 1, which is as 

follows: 

Step 1. Determine XP  and Q  from definitions 3 and 4. Determine P  according 

to Section 3.2. 

5.3 The version based on the solutions for shorter segments (Version A3) 

Version A3 is an improved version of A1. It uses the solution to a shorter segment as 

the initial solution to the current segment, and skips some non-promising strips. 

In Step 3 of Version A1 and A2, function )SegRec(  is called M  times to find the 

value of the optimal layouts on X-segments Wpi × , Mi ,,1K= . Recall that 1+< ii pp  

for 11 −<≤ Mi . Assume that Mij ≤<<1  and the solution to segment yp j ×  is 

known, namely 0),( ≥ypF j . This solution is also feasible to segment ypi × , for that 

ij pp < . Let this solution be the initial solution to segment ypi × . This should be done 

in Step 2 of function )SegRec( . In steps 3 to 6 of )SegRec( , m  types of strips are 

considered one by one. A strip of width iw  can be skipped, if ),(),( ji pivpiv = . The 

reason is that introducing a strip of width iw  and value ),(),( ij pivpiv =  into the 

solution to segment yp j ×  cannot improve the solution, for that the solution is already 

optimal. As a result, introducing the same strip into the initial solution to segment 

ypi ×  cannot improve the solution either, for that this initial solution is actually the 

optimal solution to segment yp j × . 

5.4 The final algorithm (Version A4) 

Version A4 differs from A3 only in Step 1. Step 1 of A3 is the same as that of A1, 

whereas Step 1 of A4 is the same as that of A2. 

6. THE COMPUTATIONAL RESULTS 

6.1 Test on random problems 

The computations were performed with a computer of clock rate 2.8GHz and inner 

memory 512MB. Fifty random test problems were used to test all versions of the 

algorithm. These problems were generated according to the uniform distributions in the 

following variable ranges: Sheet length in [2000, 2500], sheet width in [1000, 1250], 

initial step and strip width both in [100, 450]. Each problem includes 30 blank types. 

The succeeding step )int( iii arb = , where ir  is uniformly distributed in [0.6, 0.9]; the 

value is iii wbc = , 30,,1K=i . Once the paper is published, these problems will be 

made available on the Internet: 

http://www.gxnu.edu.cn/Personal/ydcui/Index.asp 
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The material usage is used to measure the quality of a pattern, which is determined as: 

100)](/)[(
1

××= ∑ =
WLxcu

m

i ii (%) 

Here u  is the material usage, and ix  is the number of the i th blank type appearing in 

the pattern. The average material usage is 97.7747%. The average computation time of 

one problem is 2.741s for A1, 0.361s for A2, 0.298s for A3, and 0.124s for A4. Version 

A2 considers only normal segment lengths and widths. It is much more efficient than 

A1; Version A3 uses the solution to shorter segments as the initial solution to the 

current segment, and skips non-promising strips. It is also much more efficient than A1. 

Version A4 uses both techniques. It is the most efficient one among all versions. 

6.2 Solution to a cutting stock problem 

Six types of blanks are to be cut from sheet 2000×1200. Assume that id  is the 

demand for the i th blank type. The data of the blank types are as follows 

( iiii dwba ××× ): 

144×127×224×9720, 277×255×256×5647, 234×206×185×8725, 348×286×208×8985 

A LP approach similar to that in [2] is combined with the algorithm of this paper to 

solve the example. Figure 4 shows the solution that contains four patterns. The total 

number of sheets used to meet the blank demand is 670 pieces, and the material usage is 

94.04%. Pattern 4 is a Y-pattern, and the others are X-patterns. Each pattern contains 

two segments except Pattern 3, which consists of three segments. 

            

(1) (2)  

            

(3) (4) 

Figure 4. Cutting patterns. (1) 202 pieces. (2) 55 pieces. (3) 403 pieces (4) 10 pieces 

7. CONCLUSIONS 

For factories in the sheet metal industry, the number of blank types processed by the 
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cutting and punching processes may range from 5 to 50. Generating good cutting 

patterns is helpful for improving material usage at the cutting stage. The algorithm 

presented in this paper can generate optimal two-staged cutting patterns feasible for the 

cutting stage. The computation time is reasonable for practical use. 

Combined with the LP approach, the algorithm may be used to solve the cutting stock 

problem, where the variables are the numbers of sheets cut according to each pattern. 

The values of the variables must be rounded to integers. LP approach is not very 

adequate for the case where the demands for the blank types are smaller, for that the 

rounding procedure will cause the solution to departure from the optimal solution. To 

deal with the above situation, it is better to use an algorithm for the constrained 

two-dimensional cutting problem of strips (CTDC for short). The CTDC differs from 

the UTDC in that there exists constraint on the number of each blank type appearing in 

the cutting pattern. The two-staged pattern may be used in developing the algorithms for 

the CTDC. 
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