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Abstract- A generalized Krylov-Bogoliubov-Mitropolsky (KBM) method is extended 

for the study of strongly nonlinear oscillators with slowly varying parameters. The 

asymptotic amplitude and phase are derived and then the asymptotic solutions of 

arbitrary order are obtained theoretically. Cubic nonlinear oscillators with polynomial 

damping are studied in detail. Three examples are considered: a generalized Van der Pol 

oscillator, a Rayleigh equation and a pendulum with variable length. Comparisons are 

also made with numerical solutions to show the efficiency and accuracy of the present 

method. 
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1. INTRODUCTION 

This paper is to study the following strongly nonlinear oscillator  
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where tt ε=~  is the slow scale. Assume that g  and h  are arbitrary nonlinear 

functions of their arguments and Eq.(1) has periodic solutions when 0=ε . Many 

problems in engineering are modeled as Eq.(1), such as pendulum with varying 

length[1], machines with variable mass[2], and motion of electron in free-electron 

laser(FEL)[3]. For the case of linear spring in )
~
,( tyg , the classical KBM method [4] is 

effective to deal with Eq.(1). While )
~
,( tyg  is a cubic polynomial in y , the KB 

method is extended as the elliptic KB (EKB) method by using Jacobian elliptic 

functions [5,6], and adiabatic invariants coupled with elliptic functions are applied to 

find the asymptotic solutions [7]. However, the EKB method can give only the first 

order approximation and the classical KBM method is effective only for weakly 

nonlinear oscillations. For the case of linear damping in )
~
,,( t

dt

dy
yh , Kuzmak proposed 

a multiple scales method to obtain the conditions of periodicity and asymptotic 

solutions of first order [8], and then Luke extended it to higher order [9]. Kevorkian and 
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Li reviewed and compared the Kuzmak-Luke method and that of near-identity 

averaging transformations [10]. Bourland and Haberman used a two-variable procedure 

to give a careful analysis of Eq.(1) and derived the equation governing the slowly 

varying phase [11], which has been summarized by Kevorkian and Cole [12]. Recently, 

the author developed the Kuzmak-Luke method to obtain the asymptotic solutions of Eq. 

(1) and applied it to quadratic and cubic nonlinear oscillators [13]. For Eq. (1) without 

slowly varying parameters, that is 
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a generalized KBM method is proposed to obtain the asymptotic solutions of arbitrary 

order [14]. This method is effective for general nonlinear function )(yg . In this paper, 

this generalized KBM method will be developed to treat strongly nonlinear oscillators 

with slowly varying parameters. The asymptotic amplitude and phase are derived and 

then the asymptotic solutions of arbitrary order are obtained theoretically. As an 

application, cubic nonlinear oscillators with polynomial damping are studied in detail. 

Three typical examples are considered: a generalized Van der Pol oscillator, a Rayleigh 

equation and a pendulum with variable length. Comparisons are also made with 

numerical solutions to show the efficiency and accuracy of the present method. 

 

2. THE GENERALIZED KBM METHOD 

In this section we extend the generalized KBM method [14] to Eq. (1). Assume that 

the asymptotic solutions of Eq.(1) can be expanded as 
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where a  is the amplitude, and ψ  is the phase factor. ),2,1,0( L=nyn  are periodic 

functions of ψ  with a constant period normalized to be T . a  and ψ  satisfy 
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For simplicity, the initial conditions are assumed to be 

0)0,0,(,)0,0,(,0,0 0 ==== ayaayt &ψ                              (5) 

From Eqs.(3) and (4), we have the derivative transformations 
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Substituting (2) into (1) and equating same powers of ε  give the equations 
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where nF  are known functions, L,2,1=n . In particular, 1F  is worked out as 
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According to the generalized KBM method [14], we assume that Eq.(8) has a periodic 

solution 0y  and 0B  can be found out. It is easy to verify that a solution of the 

homogeneous equation (9) has the form 

ψ∂
∂

=Ι
0yy                                                       (11) 

The other solution linearly independent of Ιy  can be found by the reduction of order 
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Using variation of parameters, the general solutions of Eq.(9) are 
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where coefficients nD1  and nD2  can be determined by the initial conditions (5). For 
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1=n , we have 
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taAtaB
D = , 021 =D . Multiplying Eq.(9) respectively by 

Ιy  and ΙΙy  and integrating from 0  to T  with respect to ψ , we obtain the 

solvability conditions for Eq.(9)  
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Then nA  and nB  can be determined by Eqs.(14) and (15) respectively. Particularly, 

1A  and 1B  can be worked out as 
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Hence, the asymptotic solution to )( 2εO  is 
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and a  and ψ  can be solved from the following equations 
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The procedure can be carried out up to desired order, although the calculations are 

rather involved.  

 

3. APPLICATION TO CUBIC NONLINEAR OSCALLATORS 

As an application of the generalized KBM method, we consider the following cubic 

nonlinear oscillator 
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where n  is a positive integer. For 2≥n , the explicit approximations of Eq.(21) are 

difficult to obtain by the multiple scales method [11,12,13]. Suppose that the solution of 

Eq. (21) can be developed in the form of asymptotic expression (2). Note that ),(0 ψay  

satisfies 

0)
~
()

~
()

~
,( 3

03012

0

2
2

0 =++
∂

∂
ytcytc

y
taB

ψ
                              (22) 

Eq. (22) has an exact analytical solution expressed by Jacobian elliptic functions in the 

case of 0)
~
(1 >tc  and 0)

~
(3 >tc  
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where )(vK  is the complete elliptic integral of the first kind with the modulus v . 

Substituting Eq. (23) into Eq. (22), we can find that 
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From Eq. (16), )
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,(1 taA  can be solved as 
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By the formulas of elliptic integrals [15], )
~
,(1 taA  can be worked out and the 

amplitude )
~
(ta  is determined by Eq. (19). Similarly, we can carry out )

~
,(1 taB , ψ , 

)
~
,,(1 tay ψ  and so on. 

When 0)
~
(1 >tc  and 0)

~
(3 <tc , the solution of Eq. (22) can be expressed by 
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Similarly, when 0)
~
(1 <tc and 0)
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(3 >tc , the solution of Eq. (22) can be expressed by 
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4. EXAMPLES 

Example 1 Consider the following generalized Van der Pol oscillator 
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From Eqs.(19) and (25) , we have 
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and )(vE  is the complete elliptic integral of the second kind associated with the 

modulus v . Comparison of numerical solution and asymptotic amplitude obtained by 

Eqs.(19) and (25) with 01.0=ε  is shown in Fig. 1. In this paper the symbolic 

language Mathematica is used to implement the asymptotic and numerical solutions. 
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Fig. 1. Asymptotic amplitude and numerical solution of Eq. (27) with 01.0=ε  

___, numerical solution and - - -, asymptotic amplitude 

 

Example 2 Consider a cubic nonlinear oscillator with variable mass 
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Comparison of numerical solution and asymptotic amplitude obtained by Eqs.(19) and 

(24) with 01.0=ε  is shown in Fig. 2 
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Fig. 2. Asymptotic amplitude and numerical solution of Eq. (28) with 01.0=ε  
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Example 3 Consider a pendulum with slowly varying length 
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where θ  is the angle of deviation of the pendulum from the vertical, g  is the 

gravitational acceleration, )
~
(tl  is the slowly varying length. For not large oscillations, 

we can approximate θsin  by the first two terms of the power series expansion, and 

then equation (29) becomes 
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where 
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From Eqs.(19) and (25), we have 
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Fig. 3. Asymptotic amplitude and numerical solution of Eq. (31) with 01.0=ε  
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5. CONCLUSIONS 

The generalized KBM method is effective for strongly nonlinear oscillators with 

slowly varying parameters and can obtain asymptotic solutions of arbitrary order 

theoretically, while the classical KBM method works only for weakly nonlinear 

oscillations and the EKB method can give only the leading order approximation.  

Cubic nonlinear oscillators are studied in detail to illustrate the present method.    

Three examples are considered: a generalized Van der Pol oscillator, a Rayleigh 

equation and a pendulum with slowly varying length. The asymptotic results are in good 

agreement with the numerical solutions.  
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