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Abstract: A 2-D analytical mesoscale hydrostatic model of a stably stratified 

orographic barrier has been considered. Expressions for surface pressure perturbation, 

mountain drag and energy flux across Pirpanjal mountains of Kashmir valley for 

variable wind have been derived. These are further evaluated for realistic vertical profile 

of wind and temperature. Also study has been extended to obtain all these parameters 

for different vertical wind profile. 
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1. INTRODUCTION 

Lyra [2] first addressed the study of 2-D mountain wave problem. He considered a 2-D 

model and obtained solutions using Green’s function. Later Queney [3 and 4] purposed 

a theory in a stratified and rotating atmosphere and applied this theory to the flow over a 

2-D bell shaped mountain. Afterward many studies have been done related to mountain 

wave.  

Recently Teixeira et al. [6] developed an analytical model to predict the surface 

drag exerted by internal gravity waves on an isolated axisymmetric mountain for a 

velocity profile that varies relatively slowly with height based on Wentzel- Kramers- 

Brillouin (WKB) approximation. They showed that drag is proportional to inverse 

Richardson number 
1−

iR and it decreases as iR  decreases for wind varies linearly with 

height. Afterward Teixeira and Miranda [7] modified the model of Teixeira et al. [6] to 

calculate the mountain drag exerted by a stratified flow over a 2-D mountain ridge. 

They showed that drag is strongly affected by the vertical variation of the background 

velocity than an axisymmetric mountain and calculated mountain drag and pressure 

perturbation at surface analytically.  

In this paper, the aim is to evaluate the surface pressure perturbation, mountain 

drag and energy flux for variable wind across double ridge profile of Pirpanjal 

mountains of Kashmir valley using the model purposed by Teixeira and Miranda [7] for 

single ridge. Further study has been extended to obtain all these parameters for different 

vertical wind profile.   

 

2. THEORETICAL MODEL 

The analytical expression of Pirpanjal hills of Kashmir valley (Kumar et al. [1]), whose 

profile is shown in figure 1 is given by  
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where, kmH 9.1= ; kma 6019796.8= ; kmb 353073.39= ; kmc 038303.49= ; 

kmd 8835262.1= , kme 0.36=  and kmf 43532.178=  
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Fig. 1, Profile of Pirpanjal hills of Kashmir Valley 

By Fourier transform of equation (1), we have 

( ) ( )keifckak dfeikbceaHekh −−−− ++=ˆ       (2) 

and 
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To evaluate surface pressure perturbation across Pirpanjal mountains of Kashmir valley, 

we take the following expression of surface pressure perturbation  
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                  (Teixeira and Miranda [7]) 

where 
dz

dg
N

ρ
ρ0

2 −=  is Brunt-Vaisala frequency, 0ρ  is mean density , 0U  is the 

unperturbed surface wind velocity, oU ′  and 0U ′′  are the first order and second order 

derivative of  0U , ( )kĥ  is the Fourier transform of the profile of orographic barrier 

( )kh .  

By inverse Fourier transform of equation (4), we have 
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Now substituting equation (2) into equation (5) for real solution, we have 
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Equation (6) is the analytical expression of surface pressure perturbation for 2- D profile 

of Pirpanjal mountains of Kashmir valley. Which contains two parts, first part is 

antisymmetric with respect to mountains and second part is symmetric with respect to 

mountains. 

Now, the expression of mountain drag is 
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(Teixeira and Miranda [7]) 

Substitute equation (3) into equation (7), we get 
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So, mountain drag for real solution becomes 
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Now the expression of energy flux at surface is 
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By its Fourier transform, we have 
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 Now substitute equation (10) into equation (11), we get 
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Substituting ( )0ˆ =zp  from equation (4) into equation (12), we have 
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Finally using equation (3) into equation (13) for real solution, we get 
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3. RESULTS AND CONCLUSIONS 

 

The analytical expressions for surface pressure perturbation (equation 6), mountain drag 

(equation 9) and energy flux (equation 14) for 2-D profile of Pirpanjal mountains of 

Kashmir valley for variable wind have been derived. Further these expressions are 

evaluated for the real vertical profile of ( )zU  and ( )zT  for dated 02-08-2005 and 11-08-

2005, which are shown in figures 2 and 3. 
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Fig. 2 Vertical Profile of U(z) and T(z) on  12Z of   02-08-05 at Srinagar 
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Fig. 3 Vertical Profile of U(z) and T(z) on 12Z of  11-08-05 at Srinagar 

 

                          
For dated 02-08-2005 
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For dated 11-08-2005 
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The above expressions for surface pressure perturbation contain two parts, first part is 

antisymmetric with respect to mountains, second part is symmetric with respect to 

mountains and its contribution is negligible. Also as surface wind decreases in result 

magnitude of antisymmetric part increases and magnitude of symmetric part decreases.  

Also if we assume that wind is constant with height, in that case symmetric part 

becomes zero. 

It can be noticed from the expressions of mountain drag and energy flux that as 

0→f , the magnitudes of last two factors increases, which are due to valley between 

the ridges, thus valley role becomes important for mountain drag and energy flux in 

case of 0→f  and its profile is shown in figure 4. 

When the distance between the ridges increases, the valley’s contribution started 

decreases and for ∞→f , last two terms of mountain drag and energy flux approaches 

zero. Thus for ∞→f , there is no contribution of valley between the ridges for 

mountain drag and energy flux. The profiles of Pirpanjal mountains for kmf 10=  and 

∞→f  are shown in figure 5 and 6 respectively. 



 

 

 

N. Kumar 

 

 

16 

                        

260 220 180 140 100 60 20 20 60 100

1

2

3

4

Distance (km)

z 
(k

m
)

 
Fig. 4 Profile of Pirpanjal hills for 0→f  
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Fig. 5 Profile of Pirpanjal hills for kmf 10=  
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Fig. 6 Profile of Pirpanjal hills for ∞=f  

For constant wind velocity, mountain drag (equation 9) and energy flux (equation 14) 

reduce to 
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Using above expressions into equation (9) and (14) respectively, we get 
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This implies that normalized mountain drag is equal to normalized energy flux and 

independent on the orographic barrier. 
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If in case wind rotates with height at constant rate such that 

            ( )zUU βcos0=     (Shutts and Gadian [5]) 

where, β  is constant, so equations (6), (9) and (14) become 
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where 
22

0

2

βU

N
Ri =  and its contour for surface pressure perturbation is shown in figure 

7. 
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Further if wind decreases linearly with height such that 
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the constant. So surface pressure perturbation becomes 
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where 
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Now in case wind flows with parabolic profile such that  
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where cz  is the constant. So in this case surface pressure perturbation from equation (6) 

reduces to 
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