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Abstract– In this paper, we present an algorithm for the problem of multi-channel blind 

deconvolution which can adapt to un-known sources with both sub-Gaussian and super-

Gaussian probability density distributions using a generalized gaussian source model. 

We use a state space representation to model the mixer and demixer respectively, and 

show how the parameters of the demixer can be adapted using a gradient descent 

algorithm incorporating the natural gradient extension. We also present a learning 

method for the unknown parameters of the generalized Gaussian source model. The 

performance of the proposed generalized Gaussian source model on a typical example is 

compared with those of other algorithm, viz the switching nonlinearity algorithm 

proposed by Lee et al. [8]. 

Keywords– blind deconvolution, blind source separation, generalized Gaussian source 

model, multichannel blind deconvolution. 

1. INTRODUCTION 

Recently, the problems of Blind Source Separation (BSS) or Independent 

Component Analysis [2, 3, 9], and multichannel blind deconvolution (MBD) [6, 10] 

have been extensively studied. For BSS problems, source signals are instantaneously 

mixed by an unknown matrix, while for MBD problems, the source signals are mixed 

through a series of unknown dynamical systems. Since the mixing involves dynamical 

systems in MBD problems, delay is inevitably present, thus rendering it more complex 

to analyze than BSS. In BSS and MBD problems, both the sources and the mixing 

system are unknown, it is intuitively clear that the sources cannot be recovered without 

some necessary restriction on the nature of the sources. 

  Assumptions on the nature of the sources. The usual assumptions [2] place on the 

problems of BSS and MBD are as follows:  

1. The source signals are statistically independent. 

2. At the most one of the source signals is Gaussian distributed. 

3. It is only possible to recover the source signals modulo scale, and polarity. 

In addition, in this paper, we assume that the dynamical mixing systems in MBD 

problems are linear time invariant (LTI) systems which are modeled by constant 

parameters. There are many algorithms for tackling BSS and MBD problems. A popular 

assumption on the source signals is that they have sharply symmetrical distributions, 

i.e., the source signals are super-Gaussian with positive kurtosis. The classic Bell-

Sejnowski infomax algorithm [2] works well when it is applied to mixtures of super-

Gaussian signals, but it becomes inefficient when the mixtures include sub-Gaussian 
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signals. The reason of the inefficiency in source separation in this case is that the 

assumed source model is invalid for the sub-Gaussian sources. This gives impetus to 

find more appropriate source models to BSS and MBD problems. Most researchers 

focus on modelling the sources with symmetrical unimodal probability density 

distributions because they are simple to analyze and they can model the source signals 

well in practice. Douglas et al. [6] presented a simple and efficient extension of a family 

of algorithms in BSS and MBD problems with mixtures of arbitrary non-Gaussian 

sources. Their algorithms [6] monitor the statistics of each output signal of the demixer, 

then selects the appropriate nonlinearity for each recovered source. Their algorithm is 

based on some necessary BSS stability conditions [3]. Choi et al. [4] derived a learning 

algorithm, called flexible ICA, with a “flexible”nonlinearity. This nonlinear function is 

controlled by the Gaussian exponent according to the estimated kurtosis of the 

recovered signals. Hence the algorithm can successfully separate the mixture of both 

super-Gaussian and sub-Gaussian sources simultaneously. In Lee et al. [8], an extension 

of the infomax algorithm is derived which is able to separate both super- and sub-

Gaussian independent components. A symmetrical strictly sub-Gaussian density is 

modeled using a symmetrical form of Pearson model or hyperbolic Cauchy density 

model. A switching criterion based on BSS stability analysis [3] is obtained. The above 

mentioned methods work well as they assume that the characteristics of the signals do 

not alter rapidly. In these methods, there is a certain detection latency as most of them 

require a finite time to elapse before they can react to the characteristics of the 

recovered source signals. For example, in [4] the kurtosis of the recovered signals need 

to be estimated while in [6], statistics of the recovered signals need to be monitored. 

Hence for signals whose characteristics vary rapidly, the above mentioned methods 

might not be sufficiently sensitive. In this paper, we will consider the generalized 

Gaussian source model originally proposed in [7] to “automatically” estimate the source 

signals in the MBD problems. Here “automatic”is taken to mean that our algorithm will 

estimate the parameters of the generalized gaussian source model from the recovered 

signals directly. The nonlinearity used in the separation of signals is a function of these 

estimated parameters. The parameters of the generalized gaussian source model can be 

easily interpreted, thus adding transparency to the estimated parameters. Hence the 

proposed algorithm works more “flexibly” in its ability to adapt to the changing nature 

of the source signals. The paper is organized as follows: State space Approach to 

Multichannel Blind Deconvolution is described in Section 2. For the sake of 

completeness, in Section 3 we include a brief description of the switching nonlinearity 

algorithm [10] adapted to the MBD case. This section also contains a special form of 

the switching nonlinearity algorithm, viz., the fixed nonlinearity algorithm. Generalized 

gaussian Source Model is introduced in Section 4. Some experimental results are given 

in Section 5. Finally we draw some conclusions in Section 6. 

2. STATE SPACE APPROACH TO MULTICHANNEL BLIND 

DECONVOLUTION 

Given a vector of observed signals u(k);  k∈ [0,N], we wish to recover the 
source signals s(k) based on the assumption that the sources are statistically 

Independent. If we assume that the observations are convolutive version of the sources, 

the problem can be tackled using state space approach [10]. We consider the state space 
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approach instead of the transfer function approach, as the state space approach can be 

easily extended to nonlinear mixing systems. Moreover, the state space approach not 

only gives an efficient internal description of the dynamic systems, but also there exist 

different possible equivalent state space realizations, for instance, canonical controller 

form [10] which allows us to find “efficient” representations of the demixer  . We model 

the mixing environment of the MBD problem as follows: 

)()()()1( kLksBkxAkx pξ++=+        (1) 

)()()()( kkuDkxCku θ++=         (2) 

where s∈Rn
 , u ∈ Rn

 , and x ∈ NR are the source signals, the observations, and the state 

of the LTI dynamical system, respectively. The system matrices NxNR∈A  , 
xnNRB∈ , NnxRC∈ , and nxnRD ∈ , which are assumed to be constant, are state mixing 

matrix, input mixing matrix, output mixing matrix, and input-output mixing matrix 

respectively. The system matrices in the demixer are similarly defined. For simplicity, 

we assume the number of source n equals to the number of sensors. Normally, the 

system order N is unknown; we need to estimate its value from the observed data. Here 

we assume that the system order is “known”. Correspondingly, we model the demixer 

using a similar discrete time dynamical system:  

(k)L Bu(k)  Ax(k)  1) x(k Rξ++=+         (3) 

Du(k)  Cx(k)  y(k) +=          (4) 

where the input vector nRu∈  is the output of the mixer, nRy∈  is the recovered signal 

vector, and NRx∈ is the system states of the demixer. For successful separation and 

deconvolution, we need NN ≥ . Here we assume both the mixer and the demixer exist, 

in particular, D
-1
 exists. The condition of the existence of solution in multichannel blind 

deconvolution is studied in [10].  

 
 

 

We measure the dependence among the recovered sources y using mutual information. 

Given P(y), the probability density function (PDF) of the recovered signal vector y, the 

mutual information between the recovered signals can be defined as follows: 
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General linear state space model for blind deconvolution Fig.1. 



 

 

A. S. Abu-Taleb,E. M. E. Zayed, W. M. El-Sayed, A. M. Badawy 

and O. A. Mohammed 

 

4

          = ∑
=

+−
n

k

qyHyH
1

),()(                                                                                  (6) 

where  ]E[log(P(y)-  H(y) = is the entropy of y, )]([log()( qq ypEyH −=  is the marginal 

entropy of qy . For simplicity, for the remaining part of this paper, the time index k is 

dropped if there is no risk of confusion. Observe that I(y) = 0, and I(y) = 0 if and only if 

the components of vector y are statistically independent. Therefore I(y) is an 

appropriatemeasurement of the dependence among the recovered signals. Unfortunately, 

mutual information is difficult to compute explicitly, hence we use a cost function 

similar to [10]:  
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where θ is the set of system parameters and source model parameters, which we will 
study in Section 3 and 4, det is the determinant. There exist various ways to tackle the 

optimization problem [10]. Here we follow the derivation of information back-

propagation approach given in [8]. 

2.1. Gradient-based learning rules 

Based on the cost function (7), we can easily obtain the following updating rules. For 

matrices D and  

DDuyIktDkD TT ))()(()()1( ϕη −+=+      (8) 
TxykkCkC )()()()1( ϕη−=+  

 

where )(yϕ  is a vector nonlinearity related to the source model. This will be discussed 

further in Section 3. Note, natural gradient [1] is used in (8) to improve the performance 

of the learning process. Similarly, for matrices A and B, we have: 
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where liδ is the Kronecker delta function. 

3. LEE ET AL. SWITCHING NONLINEARITY ALGORITHM 

For the sake of completeness, we will briefly describe the algorithm due to Lee et al. [8] 

on detecting the kurtosis of the recovered signals, and then switch the nonlinearity 

based on this information. We will follow closely the development in [8], but adapting 

their notation to the notations in this paper for its applications to MBD. Consider the 

learning equation for D, as shown in (8). Consider the reconstructed signal y. In general, 

a symmetrical form for modelling a strictly sub-Gaussian density can be obtained using 

Pearson’s mixture model:  

[ ]),(),(
2

1
)( 22 σµσµ −+= NNyp q        (13) 

 

where ),( 2σµN  denotes the Gaussian distribution with mean µ  and variance 2σ . For 

various values of µ  this can be either a unimodal distribution, or a bimodal distribution. 
The nonlinearity in (8) can be expressed as: 
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if µ =1, and 2σ =1,  and substituting this into (8), we have:  

 

DDyuDuyIkkDkD TTTT ))tanh()(()()1( −++=+ η     (15) 

 

This is the learning algorithm derived by assuming that the source model is a sub-

Gaussian model. And in a similar fashion, we can derive a learning rule for super-

Gaussian distributions. The two can be combined together to give: 

DDyuDuyKIkkDkD TTTT ))tanh()(()()1( −−+=+ η     (16) 

 

where K is a diagonal matrix with elements kq = 1 if the recovered signal is super-

Gaussian, and kq = - 1 if the recovered signal is sub-Gaussian. If we assume that K is an 

identity matrix, then this will be referred to as the fixed nonlinearity case. This is the 

algorithm derived in [10]. Using stability arguments [3], it is possible to estimate the 

coefficient kq as follows: 

}}){tanh(}{)}({sec{ 22

qqqqq yyEyEyhEsignk −=      (17) 

Thus, qk  can be estimated for each recovered signal. 
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4. GENERALIZED GAUSSIAN SOURCE MODEL 

A generalized Gaussian source model is introduced in [5]. This model encompasses 

both super- and sub-Gaussian sources. The generalized gaussian density is expressed as 

follows: 
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where 0>qr is a variable parameter, ∫
∞

− −=Γ
0

1 )exp()( dyyyr r  is the gamma function and 

{ }rr

i yE=σ  is a generalized measure of variance known as the dispertion of the 

distribution. The parameter qr  can change from zero to, through 1 (the Laplace 

distribution) and qr =2 (standard Gaussian distribution), to qr going to infinity (for 

uniform distribution). Once we model the source with generalized gaussian density, we 

can choose the nonlinearity as follows: 
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where the sign operator can be defined as follows: 
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The parameters of the model can be estimated online as follows: Consider the cost 

function (7), we need to learn the parameters of the generalized gaussian source model 

to maximize the cost function. We can derive the gradient of l  with respect to  with 

respect to qqr σ, as follows [7]: 
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=•ψ  is the digamma function. Based on the above gradient, we have the 

following learning rules for qqr σ,  
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5. EXPERIMENTAL RESULTS 

In this experiment, consider the system described by the following two independent 

soources: 

)))40cos(9500sin(01.0)(

)30cos()400sin(1.0)(

2

1

nnnu

nnnu

+=

=
       (25) 

The observed signals u(k) are obtained by passing the source signals through a mixing 

linear  dynamical system defined in (1), and (2),  where the source number n = 2, and 

system order N = 2. The system matrices DandCBA ,, are randomly selected, except 

that we guarantee 1−D  exists and the eigenvalues of A are within the unit circle. 

5.1. Lee et al.’s Switching Nonlinearity method 

In this section, we present results (shown in Figure 1)in applying the method derived in 

Section 3. 

5.2. Generalized Gaussian model approach 

In this section, we will present results using the generalized gaussian model approach as 

proposed in this paper (see Figures 2). Table 1 gives the mean squared errors among the 

two methods. It is noted that the generalized Gaussian model gives the smallest mean 

squared errors. 
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Fig. 2 Signals of Lee et al’s method. For explanation of these graphs please see caption 

for Figure 2 

 

 

 

Fig. 3. Signals of the generalized Gaussian model. (for an explanation of the graphs 

please see the caption for Figure 3) 

Table 1: A table showing the mean squared errors as obtained by each of the two 

methods. 

 

Method Signal 1 Signal 2 

Lee et al 0.00029

1 

0.00021

6 

generalized gaussian 

model 

0.00012

67 

0.00007

82 

 

6. CONCLUSION 

In this paper, we consider the possibility of “automatic” adaptation to the source model, 

whether it is super-Gaussian or sub-Gaussian. We use the fixed nonlinearity approach 

[10] as the baseline for comparison. We extend the generalized gaussian source model 

proposed in [5] to the MBD case. In addition, we have extended the switching 

nonlinearity method in [8] to the MBD case as well. The two methods are all applied to 
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two synthesized signals. It is quite surprising to observe that the method proposed in 

[10] works well even though it was not designed to work with non stationary signals. 

The method proposed in [8] works well, with the nonlinearities switching based on an 

estimation of the kurtosis of the recovered signals. The proposed generalized Gaussian   

model works best in that it gives the smallest mean squared error.  
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