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Abstract-This work constructs the membership functions of the system characteristics 
of a batch-arrival queuing system with multiple servers, in which the batch-arrival rate 
and customer service rate are all fuzzy numbers. The  -cut approach is used to 
transform a fuzzy queue into a family of conventional crisp queues in this context. By 
means of the membership functions of the system characteristics, a set of parametric 
nonlinear programs is developed to describe the family of crisp batch-arrival queues 
with multiple servers. A numerical example is solved successfully to illustrate the 
validity of the proposed approach. Because the system characteristics are expressed and 
governed by the membership functions, the fuzzy batch-arrival queues with multiple 
servers are represented more accurately and the analytic results are more useful for 
system designers and practitioners. 
Keywords- Fuzzy sets, Membership function, Multiple server, Nonlinear programming 
 

1. INTRODUCTION 
Queueing models with multiple servers are effective methods for performance 

analysis of computer and telecommunication systems, manufacturing/production 
systems and inventory control (Kleinrock [11], Buzacott and Shanthikumar [1], Gross 
and Harris [7], Trivedi [19]). In general, these analyses consider a queueing system 
where requests for service arrive in units, one at a time (single-unit arrival). In many 
practical situations, however, requests for service usually arrive in batches. For example, 
in manufacturing systems of the job-shop type, each job order often requires the 
manufacture of more than one unit; in computer communication systems, messages 
which are to be transmitted could consist of a random number of packets. If the usual 
crisp batch-arrival queues with multiple servers can be extended to fuzzy batch-arrival 
queues, such queueing models would have wider applications. 
   For queueing models with multiple servers under various considerations, the M/M/c 
vacation systems with a single-unit arrival have attracted much attention from numerous 
researchers since Levy and Yechiali [12]. The extensions of this model can be referred 
to Vinod [20], Igaki [8], Tian et al. [17], Tian and Xu [18], and Zhang and Tian [23, 24]. 
Zhang and Tian [23, 24] studied the M/M/c vacation systems with a single-unit arrival 
and a “partial server vacation policy”. They proved several conditional stochastic 
decomposition results for the queue length and waiting time. Chao and Zhao [3] 
investigated the GI/M/c vacation models with a single-unit arrival and provided iterative 
algorithms for computing the stationary probability distributions.  

In the literature described above, customer inter-arrival times and customer service 
times are required to follow certain probability distributions with fixed parameters. 
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However, in many real-world applications, the parameter distributions may only be 
characterized subjectively; that is, the arrival and service are typically described in 
everyday language summaries of central tendency, such as “the mean arrival rate is 
around 5 per day”, or “the mean service rate is about 10 per hour”, rather than with 
complete probability distributions. In other words, these system parameters are both 
possibilistic and probabilistic. Thus, fuzzy queues are potentially much more useful and 
realistic than the commonly used crisp queues (see Li and Lee [13] and Zadeh [22]). By 
extending the usual crisp batch-arrival queues to fuzzy batch-arrival queues in the 
context of multiple servers, these queuing models become appropriate for a wider range 
of applications. 

Li and Lee [13] investigated the analytical results for two typical fuzzy queues 
(denoted M/F/1/  and FM/FM/1/ , where F represents fuzzy time and FM represents 
fuzzified exponential distributions) using a general approach based on Zadeh’s 
extension principle (see also Prade [15] and Yager [21]), the possibility concept and 
fuzzy Markov chains (see Stanford [16]). A useful modeling and inferential technique 
would be applied their approach to general fuzzy queuing problems (see Stanford [16]). 
However, their approach is complicated and not suitable for computational purposes; 
moreover, it cannot easily be used to derive analytic results for other complicated 
queuing systems (see Negi and Lee [14]). In particular, it is very difficult to apply this 
approach to fuzzy queues with more fuzzy variables or multiple servers. Negi and Lee 
[14] proposed a procedure using α-cuts and two-variable simulation to analyze fuzzy 
queues (see also Chanas and Nowakowski [2]). Unfortunately, their approach provides 
only crisp solutions; i.e., it does not fully describe the membership functions of the 
system characteristics. Using parametric programming, Kao et al. [9] constructed the 
membership functions of the system characteristics for fuzzy queues and successfully 
applied them to four simple fuzzy queue models: M/F/1/ , F/M/1/ , F/F/1/  and 
FM/FM/1/ . Recently, Chen [4,5] developed FM/FM/1/L and FM/FM[K]/1/  fuzzy 
systems using the same approach. 

All previous researches on fuzzy queuing models are focused on ordinary queues 
with a single server. In this paper, we develop an approach that provides system 
characteristics for batch-arrival queues with multiple servers and fuzzy parameters: 
fuzzified exponential batch-arrival and service rates. Through  -cuts and Zadeh’s 
extension principle, we transform the fuzzy queues to a family of crisp queues. As   
varies, the family of crisp queues is described and solved using parametric nonlinear 
programming (NLP). The NLP solutions completely and successfully yield the 
membership functions of the system characteristics, including the expected number of 
customers in the system and the expected waiting time in the queue.  

The remainder of this paper is organized as follows. Section 2 presents the system 
characteristics of standard and fuzzy batch-arrival queuing models with multiple servers. 
In Section 3, a mathematical programming approach is developed to derive the 
membership functions of these system characteristics. To demonstrate the validity of the 
proposed approach, one realistic numerical example is described and solved. Discussion 
is provided in Section 4, and conclusions are drawn in Section 5. For notational 
convenience, our model in this paper is hereafter denoted FM[x]/FM/c. 
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2. FUZZY BATCH QUEUE WITH MULTIPLE SERVERS 
We consider a batch-arrival queuing system with c servers where the customers 

arrive in batches to occur according to a compound Poisson process with batch-arrival 
rate  . Let kA  denote the number of customers belonging to the kth arrival batch, 

where ,kA ,,3 ,2 ,1 k are with a common distribution  ,3,2,1 ,]Pr[   nanA nk  , 

and 
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nnaAE . Customers arriving at the service facility (servers) form a 

single-file queue and are served in order. The service time for each of all c servers is 
exponentially distributed with rate   and each server can serve only one customer at a 
time. Customers who upon entry the service facility find that all servers are busy have 
to wait in the queue until any one server is available. Let sN  and qW  represents the 

expected number of customers in the system and the expected waiting time in the queue, 
respectively. Through a Markov process, we can easily obtain sN  and qW  in terms of 
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where ),( nP  represents the probability that there are n customers in the system. 

And the probability depends on   and  . In steady-state, it is necessary that we have 

1
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To extend the applicability of the batch-arrival queuing model with multiple 
servers, we allow for fuzzy specification of system parameters. Suppose the 
batch-arrival rate   for customers and service rate   for each server are 

approximately known and can be represented by the fuzzy sets ~  and ~ . Let )(~ x  

and )(~ y  denote the membership functions of ~  and ~ . We then have the 

following fuzzy sets: 
 Xxxx    ))(,( 

~
~ ,       (3a) 

 Yyyy    ))(,( ~
~ ,       (3b) 

where X  and Y  are the crisp universal sets of the batch-arrival and service rates. 

Let ),( yxf  denote the system characteristic of interest. Since ~  and ~  are 

fuzzy numbers, )~,
~

( f  is also a fuzzy number. Following Zadeh’s extension 
principle (see Yager [21] and Zadeh [22]), the membership function of the system 

characteristic )~,
~

( f  is defined as: 
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Assume that the system characteristic of interest is the expected number of 
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customers in the system. It follows from (1) that the expected number of customers in 
the system is: 
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The membership function for the expected number of customers in the system is: 
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(6) 
Unfortunately, the membership function is not expressed in the usual form, making 

it very difficult to imagine its shape. In this paper we approach the representation 
problem using a mathematical programming technique. Parametric NLPs are developed 

to find the  -cuts of )~,
~

( f  based on the extension principle. 
 

3. PARAMETRIC NONLINEAR PROGRAMMING 

To re-express the membership function )(~ z
sN

  of sN
~

 in an understandable and 

usable form, we adopt Zadeh’s approach, which relies on  -cuts of sN
~

. Definitions 

for the  -cuts of ~  and ~  as crisp intervals are as follows: 
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The constant batch-arrival and service rates are shown as intervals when the 
membership functions are no less than a given possibility level for  . As a result, the 
bounds of these intervals can be described as functions of   and can be obtained as: 

, )( min 1
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Therefore, we can use the  -cuts of sN
~

 to construct its membership function since 

the membership function defined in (6) is parameterized by  . 
Using Zadeh’s extension principle, )(~ z

sN
  is the minimum of )(~ x  and 

)(~ y . To derive the membership function )(~ z
sN

 , we need at least one of the 

following cases to hold such that z = 
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satisfies  )(~ z
sN

: 

Case (i): (  )(~ x ,  )(~ y ), 

Case (ii): (  )(~ x ,  )(~ y ), 

This can be accomplished using parametric NLP techniques. The NLP to find the 
lower and upper bounds of the  -cut of )(~ z

sN
  for Case (i) are: 
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and for Case (ii) are: 
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From the definitions of )(  and )(  in (7), )(x  and )(y  can 

be replaced by ],[ UL xxx   and ],[ UL yyy  . The  -cuts form a nested structure 

with respect to   (see Kaufmann [10] and Zimmermann [25]); i.e., given 
10 12   , we have ],[],[

2211

ULUL xxxx    and ],[],[
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ULUL yyyy   . Therefore, 

(8a) and (8c) have the same smallest element and (8b) and (8d) have the same largest 
element. To find the membership function )(~ z

sN
 , it suffices to find the left and right 

shape functions of )(~ z
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s.t. UL xxx    and UL yyy   , 

At least one of x  and y  must hit the boundaries of their  -cuts to satisfy 

)(~ z
sN

 = . This model is a set of mathematical programs with boundary constraints 

and lends itself to the systematic study of how the optimal solutions change with Lx , 
Ux , Ly , and Uy  as   varies over (0,1]. The model is a special case of parametric 

NLPs (see Gal [6]).  

The crisp interval [ L
sN )( , U

sN )( ] obtained from (9) represents the  -cuts of sN
~

. 

Again, by applying the results of Kaufmann [10] and Zimmermann [25] and convexity 

properties to sN
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increases. Consequently, the membership function )(~ z
sN

  can be found from (9). 

If both L
sN )(  and U

sN )(  in (9) are invertible with respect to  , then a left 

shape function 1])[()(  L
sNzL   and a right shape function 1])[()(  U

sNzR   can be 

derived, from which the membership function )(~ z
sN

  is constructed: 
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In most cases, the values of L
sN )(  and U

sN )(  cannot be solved analytically. 

Consequently, a closed-form membership function for )(~ z
sN

  cannot be obtained. 

However, the numerical solutions for L
sN )(  and U

sN )(  at different possibility levels 

can be collected to approximate the shapes of )(zL  and )(zR . That is, the set of 

intervals ]}1,0[|])(,){[( 
U

s
L

s NN  shows the shape of )(~ z
sN

 , although the exact 

function is not known explicitly. 
Note that the membership functions for the expected waiting time in the queue can 

be expressed in a similar manner. 
 

4. NUMERICAL EXAMPLE 
This section we present one example motivated by real-life systems to demonstrate 

the practical use of the proposed approach, which is based on 
http://www.macaudata.com/macauweb/book175/html/19301.htm 
Example: Considering one sewerage treatment system collects sewage from the urban 
areas and sends them to the sewerage treatment plant. The sewerage treatment plant has 
three supply pipes (referred to 3-servers). Each pipe can settle the larger solids and put 
the settled into the chemical process tank. After the chemical process, the treated water 
is discharged to the sea. We assume that the number of arriving sewage solids each time 
follows a geometric distribution with parameter 0.5p = ; i.e., the size of arriving 

sewage solids A is  ,2 ,1,)5.01(5.0)Pr( 1   kkA k . Clearly, this problem can be 
described by FM[x]/FM/3 system. For efficiency, the management wants to get the 
system characteristics such as the expected number of sewage solids in the system and 
the expected waiting time in the queue. 

Suppose the batch-arrival rate and service rate are trapezoidal fuzzy numbers 

represented by 4] ,3 ,2 ,1[
~
  and ]14 ,13 ,12 ,11[~  . First, it is easy to find that 

]4 ,1[] ,[  UL xx  and ]41 ,11[] ,[  UL yy . Next, it is obvious that when 
Uxx   and Lyy  , the expected number of sewage solids in the system attains its 

maximum value, and when Lxx  , and Uyy  , the expected number of sewage solids 

in the system attains its minimum value. According to (9), the  -cuts of sN
~

 are: 
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With the help of MATLAB® 7.0.4, the membership function is: 
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with: 

39569269988226351100500)22050(135522706039001125 23423  zzzzzzzzP , 

39569269988226351100500)22050(135522706039001125 23423  zzzzzzzzQ , 
as shown in Fig. 1. The overall shape turns out as expected. The membership functions 

)(zL  and )(zR  have complex values with their imaginary parts approaching zero 

when 
7945

4714

62

17
 z  for )(zL  and 

1175

1697

115

112
 z  for )(zR . Hence, the imaginary 

parts of these two functions have no influence on the computational results and can be 
disregarded.  

Next, we perform  -cuts of batch-arrival and service rates and fuzzy expected 
number of sewage solids in the system at eleven distinct   values: 0, 0.1, …, 1. Crisp 
intervals for fuzzy expected number of sewage solids in the system at different 
possibilistic   levels are presented in Table 1. The fuzzy expected number of sewage 

solids in the system sN
~

 has two characteristics to be noted. First, the support of sN
~

 

ranges from 0.2742 to 1.4443; this indicates that, though the expected number of 
sewage solids in the system is fuzzy, it is impossible for its values to fall below 0.2742 
or exceed 1.4443. Second, the  -cut at 1  contains the values from 0.5933 to 
0.9739, which are the most possible values for the fuzzy expected number of sewage 
solids in the system. 
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Fig. 1. The membership function for fuzzy expected number of sewage solids in the 

system 

 

Table 1.  -cuts of batch-arrival and service rates and expected number of sewage 
solids in the system 

  Lx  Ux  Ly  Uy  L
sN )(  U

sN )(  

0.00 1.00 4.00 11.00 14.00 0.2742 1.4443 
0.10 1.10 3.90 11.10 13.90 0.3039 1.3919 
0.20 1.20 3.80 11.20 13.80 0.3340 1.3410 
0.30 1.30 3.70 11.30 13.70 0.3646 1.2912 
0.40 1.40 3.60 11.40 13.60 0.3957 1.2427 
0.50 1.50 3.50 11.50 13.50 0.4273 1.1953 
0.60 1.60 3.40 11.60 13.40 0.4594 1.1491 
0.70 1.70 3.30 11.70 13.30 0.4920 1.1038 
0.80 1.80 3.20 11.80 13.20 0.5252 1.0596 
0.90 1.90 3.10 11.90 13.10 0.5590 1.0163 
1.00 2.00 3.00 12.00 13.00 0.5933 0.9739 

Similarly, the membership function for the fuzzy expected waiting time in the 

queue ( qW
~

) is obtained as shown in Fig. 2. Crisp intervals for the fuzzy expected 

waiting time in the queue at different possibilistic   levels are given in Table 2. For 

the fuzzy expected waiting time qW
~

, the range of qW
~

 at 1  is [0.0714, 0.0790], 

indicating that expected waiting time for any sewage solids definitely falls between 

0.0714 and 0.0790. Moreover, the range of qW
~

 at 0  is [0.0657, 0.0896], 

indicating that the expected waiting time in the queue will never exceed 0.0896 or fall 

sN
~  

sN  
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below 0.0657. 

 
Fig. 2. The membership function for fuzzy expected waiting time in the queue 

Table 2.  -cuts of batch-arrival and service rates and expected waiting time  

  Lx  Ux  Ly  Uy  L
qW )(  U

qW )(  

0.00 1.00 4.00 11.00 14.00 0.0657 0.0896 
0.10 1.10 3.90 11.10 13.90 0.0662 0.0884 
0.20 1.20 3.80 11.20 13.80 0.0667 0.0872 
0.30 1.30 3.70 11.30 13.70 0.0672 0.0860 
0.40 1.40 3.60 11.40 13.60 0.0678 0.0849 
0.50 1.50 3.50 11.50 13.50 0.0684 0.0838 
0.60 1.60 3.40 11.60 13.40 0.0689 0.0828 
0.70 1.70 3.30 11.70 13.30 0.0695 0.0818 
0.80 1.80 3.20 11.80 13.20 0.0701 0.0808 
0.90 1.90 3.10 11.90 13.10 0.0708 0.0799 
1.00 2.00 3.00 12.00 13.00 0.0714 0.0790 

 
 

5. CONCLUSIONS 
This paper applies the concepts of  -cuts and Zadeh’s extension principle to a 

batch-arrival queuing system with multiple servers and constructs membership 
functions of the expected number of customers and the expected waiting time using 
paired NLP models. Following the proposed approach,  -cuts of the membership 
functions are found and their interval limits inverted to attain explicit closed-form 
expressions for the system characteristics. Even when the membership function 
intervals cannot be inverted, system designers or managers can specify the system 

qW
~  

qW  
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characteristics of interest, perform numerical experiments to examine the corresponding 
 -cuts and then use this information to develop or improve system processes. 

For example, in Example, a designer (manager) can set the range of the number of 
sewage solids to be [0.5252, 1.0596] to reflect the desired service and find that the 
corresponding   level is 0.8 with Ly 11.80 and Uy 13.20. In other words, the 
designer can determine that the service rate is between 11.80 and 13.20. Similarly, a 
designer can also set the expected waiting time with “rounder” numbers like [0.0678, 
0.0849] to reflect the desired service, and the corresponding   level is 0.4 with 

Ly 11.40 and Uy 13.60. As this example demonstrates, the approach proposed in this 
paper provides practical information for system designers and practitioners. 
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